Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39339186

RESUMO

Biliverdin IXß reductase (BLVRB) has emerged as a promising therapeutic target for thrombocytopenia due to its involvement in reactive oxygen species (ROS) mechanisms. During the pursuit of inhibitors targeting BLVRB, olsalazine (OSA) became apparent as one of the most potent candidates. However, the direct application of OSA as a BLVRB inhibitor faces challenges, as it is prone to degradation into 5-aminosalicylic acid through cleavage of the diazenyl bond by abundant azoreductase (AzoR) enzymes in gut microbiota and eukaryotic cells. To overcome this obstacle, we devised olsalkene (OSK), an inhibitor where the diazenyl bond in OSA has been substituted with an alkene bond. OSK not only matches the efficacy of OSA but also demonstrates improved stability against degradation by AzoR, presenting a promising solution to this limitation. Furthermore, we have found that both OSK and OSA inhibit BLVRB, regardless of the presence of nicotinamide adenine dinucleotide phosphate, unlike other known inhibitors. This discovery opens new avenues for investigating the roles of BLVRB in blood disorders, including thrombocytopenia.

2.
Nat Commun ; 15(1): 6984, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143123

RESUMO

Transcription factors specifically bind to their consensus sequence motifs and regulate transcription efficiency. Transcription factors are also able to non-specifically contact the phosphate backbone of DNA through electrostatic interaction. The homeodomain of Meis1 TALE human transcription factor (Meis1-HD) recognizes its target DNA sequences via two DNA contact regions, the L1-α1 region and the α3 helix (specific binding mode). This study demonstrates that the non-specific binding mode of Meis1-HD is the energetically favored process during DNA binding, achieved by the interaction of the L1-α1 region with the phosphate backbone. An NMR dynamics study suggests that non-specific binding might set up an intermediate structure which can then rapidly and easily find the consensus region on a long section of genomic DNA in a facilitated binding process. Structural analysis using NMR and molecular dynamics shows that key structural distortions in the Meis1-HD-DNA complex are induced by various single nucleotide mutations in the consensus sequence, resulting in decreased DNA binding affinity. Collectively, our results elucidate the detailed molecular mechanism of how Meis1-HD recognizes single nucleotide mutations within its consensus sequence: (i) through the conformational features of the α3 helix; and (ii) by the dynamic features (rigid or flexible) of the L1 loop and the α3 helix. These findings enhance our understanding of how single nucleotide mutations in transcription factor consensus sequences lead to dysfunctional transcription and, ultimately, human disease.


Assuntos
DNA , Simulação de Dinâmica Molecular , Proteína Meis1 , Ligação Proteica , Proteína Meis1/metabolismo , Proteína Meis1/genética , Humanos , DNA/metabolismo , DNA/química , DNA/genética , Sítios de Ligação , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/química , Mutação , Sequência Consenso , Sequência de Bases
3.
JACS Au ; 4(7): 2451-2455, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39055157

RESUMO

Methylene blue (MB) has recently completed a Phase-3 clinical trial as leuco-methylthioninium (LMT) bis(hydromethanesulfonate) for treating Alzheimer's disease. Herein, we investigated the mechanism underlying the MB inhibition of tubulin-associated unit (tau) aggregation by focusing on tau monomers. We found that MB causes disulfide bond formation, resulting in strong nuclear magnetic resonance chemical shift perturbations in a large area of tau proteins. The oxidized form of MB, namely methylthioninium (MT+), specifically catalyzed the oxidation of cysteine residues in tau proteins to form disulfide bonds directly using O2. This process is independent of the MT+-to-LMT redox cycle. Moreover, MT+ preferentially oxidized C291 and C322 in the lysine-rich R2 and R3 domains. Under in vivo brain physoxia conditions, LMT may convert to MT+, possibly interfering with tau fibrillation via disulfide bond formation.

4.
Nanoscale ; 15(21): 9315-9328, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158478

RESUMO

Amyloid generation plays essential roles in various human diseases, biological functions, and nanotechnology. However, developing efficient chemical and biological candidates for regulating amyloid fibrillation remains difficult because information on the molecular actions of modulators is insufficient. Thus, studies are needed to understand how the intermolecular physicochemical properties of the synthesised molecules and amyloid precursors influence amyloidogenesis. In this study, we synthesised a novel amphiphilic sub-nanosized material, arginine-arginine (RR)-bile acid (BA), by conjugating positively charged RR to hydrophobic BA. The effects of RR-BA on amyloid formation were investigated on α-synuclein (αSN) in Parkinson's disease and on K18 and amyloid-ß (1-42) (Aß42) in Alzheimer's disease. RR-BA showed no appreciable effect on the kinetics of K18 and Aß42 amyloid fibrillation because of their weak and non-specific interactions. However, RR-BA specifically bound to αSN with moderate binding affinity through electrostatic interactions between the positively charged RR and the negatively charged cluster in the C-terminus of αSN. In addition, hydrophobic BA in the αSN-RR-BA complex transiently condensed αSN for primary nucleation, thereby accelerating αSN amyloid fibrillation. We propose an electrostatic binding and hydrophobic condensation model of RR-BA-driven amyloid formation of αSN, which will contribute to the rational design and development of molecules for controlling amyloid aggregation in diverse fields.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Amiloide/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides
5.
Protein Sci ; 32(5): e4641, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37060572

RESUMO

DJ-1, a protein encoded by PARK7 plays a protective role against neurodegeneration. Since its glyoxalase III activity catalyzing methylglyoxal (MG) to lactate was discovered, DJ-1 has been re-established as a deglycase decomposing the MG-intermediates with amino acids and nucleotides (hemithioacetal and hemiaminal) rather than MG itself, but it is still debatable. Here, we have clarified that human DJ-1 directly recognizes MG, and not MG-intermediates, by monitoring the detailed catalytic processes and enantiomeric lactate products. The hemithioacetal intermediate between C106 of 15 N-labeled DJ-1 (15N DJ-1) and MG was also monitored by NMR. TRIS molecule formed stable diastereotopic complexes with MG (Kd , 1.57 ± 0.27 mM) by utilizing its three OH groups, which likely disturbed the assay of deglycase activity. The low kcat of DJ-1 for MG and its MG-induced structural perturbation may suggest that DJ-1 has a regulatory function as an in vivo sensor of reactive carbonyl stress.


Assuntos
Doença de Parkinson , Humanos , Aldeído Oxirredutases , Ácido Láctico/metabolismo , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo
6.
Int J Biol Macromol ; 232: 123412, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36706883

RESUMO

Disruption of cellular homeostasis by the aggregation of polyglutamine (polyQ) in the huntingtin protein (Htt) leads Huntington's disease (HD). Effective drugs for treating HD have not been developed, as the molecular mechanism underlying HD pathogenesis remains unclear. To develop strategies for inhibiting HD pathogenesis, the intermolecular interaction of Htt with IP3 receptor 1 (IP3R1) was investigated. Peptide (termed ICT60) corresponding to a coiled-coil motif in the C-terminus of IP3R1 was designed. Several biophysical approaches revealed the strong and specific binding of ICT60 to the N-terminal part of HttEx1. ICT60 inhibited not only amyloid formation by HttEx1, but also the cytotoxicity and cell-penetration ability of the amyloid fibrils of HttEx1. The importance of coiled-coil structure was verified by charge-manipulated variants. The coiled-coil structures of ICT60-KK and -EE were partially and largely disrupted, respectively. ICT60 wild-type and -KK inhibited amyloid formation by HttEx1-46Q, whereas ICT60-EE did not block amyloidogenesis. Similarly, the cytotoxicity and cell-penetration ability of the amyloid fibrils of HttEx1-46Q were efficiently inhibited by ICT60 wild-type and ICT60-KK, but not by ICT60-EE. We propose a mechanical model explaining how an IP3 receptor-inspired molecule can modulate cytotoxic amyloid formation by Htt, providing a molecular basis for developing therapeutics to treat HD.


Assuntos
Amiloide , Amiloide/química , Éxons , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Domínios Proteicos
7.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012753

RESUMO

Distal-less 3 (Dlx3) is a homeobox-containing transcription factor and plays a crucial role in the development and differentiation process. Human Dlx3 consists of two transactivation domains and a homeobox domain (HD) that selectively binds to the consensus site (5'-TAATT-3') of the DNA duplex. Here, we performed chemical shift perturbation experiments on Dlx3-HD in a complex with a 10-base-paired (10-bp) DNA duplex under various salt conditions. We also acquired the imino proton spectra of the 10-bp DNA to monitor the changes in base-pair stabilities during titration with Dlx3-HD. Our study demonstrates that Dlx3-HD selectively recognizes its consensus DNA sequences through the α3 helix and L1 loop regions with a unique dynamic feature. The dynamic properties of the binding of Dlx3-HD to its consensus DNA sequence can be modulated by varying the salt concentrations. Our study suggested that this unique structural and dynamic feature of Dlx3-HD plays an important role in target DNA recognition, which might be associated with tricho-dento-osseous syndrome.


Assuntos
Proteínas de Homeodomínio , Sais , Fatores de Transcrição , DNA/metabolismo , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Sais/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Nat Commun ; 13(1): 3792, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778416

RESUMO

Partner recognition in protein binding is critical for all biological functions, and yet, delineating its mechanism is challenging, especially when recognition happens within microseconds. We present a theoretical and experimental framework based on straight-forward nuclear magnetic resonance relaxation dispersion measurements to investigate protein binding mechanisms on sub-millisecond timescales, which are beyond the reach of standard rapid-mixing experiments. This framework predicts that conformational selection prevails on ubiquitin's paradigmatic interaction with an SH3 (Src-homology 3) domain. By contrast, the SH3 domain recognizes ubiquitin in a two-state binding process. Subsequent molecular dynamics simulations and Markov state modeling reveal that the ubiquitin conformation selected for binding exhibits a characteristically extended C-terminus. Our framework is robust and expandable for implementation in other binding scenarios with the potential to show that conformational selection might be the design principle of the hubs in protein interaction networks.


Assuntos
Proteínas de Transporte , Domínios de Homologia de src , Proteínas de Transporte/metabolismo , Ligação Proteica , Conformação Proteica , Ubiquitina/metabolismo
9.
Protein Expr Purif ; 195-196: 106092, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35430350

RESUMO

Mutations in PARK7, the gene encoding the DJ-1 protein, are associated with early onset of Parkinson's disease. The C106 residue of DJ-1 is highly susceptible to oxidation, and its oxidation status is essential for various in vivo neuroprotective roles. Since C106 is readily oxidized to sulfinic acid that is not reduced by dithiothreitol, no method to separate native DJ-1 protein from the oxidized one creates challenges in the in vitro study of the biological relevance of C106-oxidation state. Here, we report an efficient column chromatography method to purify native, C106-sulfinic, and mixed (combination of the priors) forms of DJ-1. This method will be useful for systematic in vitro studies of DJ-1 functions by providing specific native and C106-sulfinic DJ-1 proteins.


Assuntos
Proteínas Oncogênicas , Doença de Parkinson , Cromatografia , Humanos , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Oxirredução , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo
10.
FEBS J ; 289(12): 3568-3586, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35048531

RESUMO

The RING domain of MUL1 (RINGMUL1 ) alone mediates ubiquitylation of the p53-transactivation domain (TADp53 ). To elucidate the mechanism underlying the simultaneous recruitment of UBE2D2 and the substrate TADp53 by RINGMUL1 , we determined the complex structure of RINGMUL1 :UBE2D2 and studied the interaction between RINGMUL1 and TADp53 in the presence of UBE2D2-UB thioester (UBE2D2~UB) mimetics. The RINGMUL1 -binding induced the closed conformation of UBE2D2S22R/C85S -UBK48R oxyester (UBE2D2RS -UBR OE ), and strongly accelerated its hydrolysis, which was suppressed by the additional N77A-mutation of UBE2D2. Interestingly, UBE2D2S22R/N77A/C85S -UBK48R oxyester (UBE2D2RAS -UBR OE ) already formed a closed conformation in the absence of RINGMUL1 . Although TADp53 exhibited weak binding for RINGMUL1 or UBE2D2 alone, its binding affinity was enhanced and even further for RINGMUL1 :UBE2D2 and RINGMUL1 :UBE2D2RAS -UBR OE , respectively. The recognition of TADp53 by RINGMUL1 as a complex with UBE2D2~UB is related to the multivalency of the binding events and underlies the ability of RINGMUL1 to ubiquitylate the intrinsically disordered protein, TADp53 .


Assuntos
Proteína Supressora de Tumor p53 , Ubiquitina , Ligação Proteica , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
J Med Chem ; 65(3): 2548-2557, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34957824

RESUMO

Biliverdin IXß reductase B (BLVRB) has recently been proposed as a novel therapeutic target for thrombocytopenia through its reactive oxygen species (ROS)-associated mechanism. Thus, we aim at repurposing drugs as new inhibitors of BLVRB. Based on IC50 (<5 µM), we have identified 20 compounds out of 1496 compounds from the Food and Drug Administration (FDA)-approved library and have clearly mapped their binding sites to the active site. Furthermore, we show the detailed BLVRB-binding modes and thermodynamic properties (ΔH, ΔS, and KD) with nuclear magnetic resonance (NMR) and isothermal titration calorimetry together with complex structures of eight water-soluble compounds. We anticipate that the results will serve as a novel platform for further in-depth studies on BLVRB effects for related functions such as ROS accumulation and megakaryocyte differentiation, and ultimately treatments of platelet disorders.


Assuntos
Inibidores Enzimáticos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Reposicionamento de Medicamentos , Inibidores Enzimáticos/química , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Termodinâmica , Estados Unidos , United States Food and Drug Administration
12.
Int J Mol Sci ; 22(7)2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33805331

RESUMO

Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion spectroscopy is commonly used for quantifying conformational changes of protein in µs-to-ms timescale transitions. To elucidate the dynamics and mechanism of protein binding, parameters implementing CPMG relaxation dispersion results must be appropriately determined. Building an analytical model for multi-state transitions is particularly complex. In this study, we developed a new global search algorithm that incorporates a random search approach combined with a field-dependent global parameterization method. The robust inter-dependence of the parameters carrying out the global search for individual residues (GSIR) or the global search for total residues (GSTR) provides information on the global minimum of the conformational transition process of the Zα domain of human ADAR1 (hZαADAR1)-DNA complex. The global search results indicated that a α-helical segment of hZαADAR1 provided the main contribution to the three-state conformational changes of a hZαADAR1-DNA complex with a slow B-Z exchange process. The two global exchange rate constants, kex and kZB, were found to be 844 and 9.8 s-1, respectively, in agreement with two regimes of residue-dependent chemical shift differences-the "dominant oscillatory regime" and "semi-oscillatory regime". We anticipate that our global search approach will lead to the development of quantification methods for conformational changes not only in Z-DNA binding protein (ZBP) binding interactions but also in various protein binding processes.


Assuntos
Adenosina Desaminase/química , DNA de Forma B/química , DNA Forma Z/química , Modelos Moleculares , Proteínas de Ligação a RNA/química , Adenosina Desaminase/metabolismo , Algoritmos , DNA de Forma B/metabolismo , DNA Forma Z/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Conformação Proteica , Proteínas de Ligação a RNA/metabolismo , Termodinâmica
13.
Biochem Biophys Res Commun ; 534: 815-821, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168186

RESUMO

The BRG1-associated factor 60A (BAF60A), an SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily D member 1, has been known to be important for transcriptional activation and inhibition through the alteration of the DNA nucleosome. Although the association between BAF60A and p53 plays a critical role in tumor suppression, the interaction mode is still unclear. Here, we report the detailed interactions between BAF60A and p53 by both NMR spectroscopy and pull-down analysis. Both N-terminal region (BAF60ANR) and the SWIB domain (BAF60ASWIB) of BAF60A directly interact with the tetramerization domain of p53 (p53TET). NMR data show that Ile315, Met366, Ala388, and Tyr390 of BAF60ASWIB are mostly involved in p53TET binding. The calculated dissociation constant (KD) value between BAF60ASWIB and p53TET revealed relatively weak binding affinity, at approximately 0.3 ± 0.065 mM. Our data will enhance detailed interaction mechanism to elucidate the molecular basis of p53-mediated integration via BAF60A interaction.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Humanos , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular/métodos , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Proteína Supressora de Tumor p53/genética
14.
Anal Chem ; 92(21): 14303-14308, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33138377

RESUMO

Neuraminidase (NA), one of the major surface glycoproteins of influenza A virus (IAV), is an important diagnostic biomarker and antiviral therapeutic target. Cytolysin A (ClyA) is a nanopore sensor with an internal constriction of 3.3 nm, enabling the detection of protein conformations at the single-molecule level. In this study, a nanopore-based approach is developed for analysis of the enzymatic activity of NA, which facilitates rapid and highly sensitive diagnosis of IAV. Current blockade analysis of the d-glucose/d-galactose-binding protein (GBP) trapped within a type I ClyA-AS (ClyA mutant) nanopore reveals that galactose cleaved from sialyl-galactose by NA of the influenza virus can be detected in real time and at the single-molecule level. Our results show that this nanopore sensor can quantitatively measure the activity of NA with 40-80-fold higher sensitivity than those previously reported. Furthermore, the inhibition of NA is monitored using small-molecule antiviral drugs, such as zanamivir. Taken together, our results reveal that the ClyA protein nanopore can be a valuable platform for the rapid and sensitive point-of-care diagnosis of influenza and for drug screening against the NA target.


Assuntos
Citotoxinas/metabolismo , Ensaios Enzimáticos/métodos , Vírus da Influenza A/enzimologia , Nanoporos , Neuraminidase/metabolismo , Citotoxinas/química , Modelos Moleculares , Neuraminidase/química , Conformação Proteica
15.
J Biomol NMR ; 74(6-7): 311-319, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415582

RESUMO

Monoclonal antibody (mAb) drugs are clinically important for the treatment of various diseases. TTAC-0001 is under development as a new anti-cancer antibody drug targeting VEGFR-2. As the less severe toxicity of TTAC-0001 compared to Bevacizumab, likely due to the decreased in vivo half-life, seems to be related to its structural flexibility, it is important to map the exact flexible regions. Although the 13C/15N-labeled protein is required for NMR analyses, it is difficult to obtain antibody fragments (Fab and scFv) containing disulfide bonds through general cytosolic expression in Escherichia coli (E. coli). Here, we notably increased the periplasmic expression of the 13C/15N-labeled TTAC-0001-Fab (13C/15N-TTAC-Fab) through simple isopropyl ß-D-1-thiogalactopyranoside (IPTG)-induction at an increased optical density (1.5 OD600nm). Through NMR triple resonance experiments, two loop insertions (LI-1 between the VH and CH1; LI-2 between the VL and CL) were confirmed to be highly flexible. The additional LIs could be another way to engineer the antibody by changing the pharmacokinetic properties.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Anticorpos Monoclonais Humanizados/genética , Isótopos de Carbono , Dissulfetos/química , Escherichia coli/genética , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Isopropiltiogalactosídeo , Marcação por Isótopo , Isótopos de Nitrogênio , Periplasma/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
16.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244797

RESUMO

Human SNF5 and BAF155 constitute the core subunit of multi-protein SWI/SNF chromatin-remodeling complexes that are required for ATP-dependent nucleosome mobility and transcriptional control. Human SNF5 (hSNF5) utilizes its repeat 1 (RPT1) domain to associate with the SWIRM domain of BAF155. Here, we employed X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and various biophysical methods in order to investigate the detailed binding mechanism between hSNF5 and BAF155. Multi-angle light scattering data clearly indicate that hSNF5171-258 and BAF155SWIRM are both monomeric in solution and they form a heterodimer. NMR data and crystal structure of the hSNF5171-258/BAF155SWIRM complex further reveal a unique binding interface, which involves a coil-to-helix transition upon protein binding. The newly formed αN helix of hSNF5171-258 interacts with the ß2-α1 loop of hSNF5 via hydrogen bonds and it also displays a hydrophobic interaction with BAF155SWIRM. Therefore, the N-terminal region of hSNF5171-258 plays an important role in tumorigenesis and our data will provide a structural clue for the pathogenesis of Rhabdoid tumors and malignant melanomas that originate from mutations in the N-terminal loop region of hSNF5.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Mutação , Nucleossomos/genética , Proteína SMARCB1/genética , Fatores de Transcrição/genética , Sítios de Ligação/genética , Dicroísmo Circular , Cristalografia por Raios X , Regulação da Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Nucleossomos/metabolismo , Ligação Proteica , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Proteína SMARCB1/química , Proteína SMARCB1/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
17.
J Mol Biol ; 432(14): 4010-4022, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32305460

RESUMO

Auxin is a plant hormone that is central to plant growth and development from embryogenesis to senescence. Auxin signaling is mediated by auxin response transcription factors (ARFs) and Aux/IAA repressors that regulate the expression of a multitude of auxin response genes. ARF and Aux/IAA proteins assemble into homomeric and heteromeric complexes via their conserved PB1 domains. Here we report the first crystal structure of the PB1 complex between ARF5 and IAA17 of Arabidopsis thaliana, which represents the transcriptionally repressed state at low auxin levels. The PB1 domains assemble in a head-to-tail manner with a backbone arrangement similar to that of the ARF5:ARF5 PB1 complex. The ARF5:IAA17 complex, however, reveals distinct points of contact that promote the ARF5:IAA17 interaction over the ARF5:ARF5 interaction. Specifically, surface charges at the interface form salt-bridges that distinguish the homomeric and heteromeric complexes, revealing common and specific interfaces between transcriptionally repressed and derepressed states. Further, the salt-bridges can be reconfigured to switch the affinity between homomeric and heteromeric complexes in an incremental manner. The complex structure combined with quantitative binding analyses would be essential for deciphering the PB1 interaction code underlying the transcriptional regulation of auxin signaling.


Assuntos
Proteínas de Arabidopsis/ultraestrutura , Arabidopsis/genética , Proteínas de Ligação a DNA/ultraestrutura , Sementes/genética , Fatores de Transcrição/ultraestrutura , Sequência de Aminoácidos/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , Domínios Proteicos/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais/genética , Fatores de Transcrição/genética
18.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 1): 1-7, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31929179

RESUMO

Mitochondrial E3 ubiquitin ligase 1 (MUL1) is located in the mitochondrial outer membrane and regulates various biological processes, including apoptosis, cell growth, mitophagy and mitochondrial dynamics. The C-terminal region of MUL1 faces the cytoplasm and contains the RING domain (MUL1-RING) where the Ub~E2 thioester binds. Unlike most RING-type E3 enzymes, MUL1-RING alone does not have an additional region that recruits a substrate protein, yet is still able to ubiquitylate the substrate, the p53 protein. Nevertheless, the exact mechanism of the ubiquitylation of p53 by MUL1-RING has not yet been elucidated. In order to understand this novel ubiquitylation mechanism, it is necessary to determine the three-dimensional structures of MUL1-RING and of its complex with the cognate E2 enzyme. Here, Ube2D2 was validated as a functional E2 enzyme for the ubiquitylation of the p53 transactivation domain (p53-TAD) by MUL1-RING, and purification and crystallization processes for MUL1-RING and the MUL1-RING-Ube2D2 complex are reported.


Assuntos
Mitocôndrias/enzimologia , Domínios RING Finger , Enzimas de Conjugação de Ubiquitina/química , Ubiquitina-Proteína Ligases/química , Cristalização , Cristalografia por Raios X , Expressão Gênica/genética , Humanos , Modelos Moleculares , Ligação Proteica , Proteína Supressora de Tumor p53/química , Ubiquitina/química , Ubiquitinação , Difração de Raios X
19.
Structure ; 27(9): 1355-1365.e4, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31353242

RESUMO

Phage endolysins are hydrolytic enzymes that cleave the bacterial cell wall during the lytic cycle. We isolated the bacteriophage PBC5 against Bacillus cereus, a major foodborne pathogen, and describe the molecular interaction between endolysin LysPBC5 and the host peptidoglycan structure. LysPBC5 has an N-terminal glycoside hydrolase 25 domain, and a C-terminal cell-wall binding domain (CBD) that is critical for specific cell-wall recognition and lysis. The crystal and solution structures of CBDs reveal tandem SH3b domains that are tightly engaged with each other. The CBD binds to the peptidoglycan in a bidentate manner via distal ß sheet motifs with pseudo 2-fold symmetry, which can explain its high affinity and host specificity. The CBD primarily interacts with the glycan strand of the peptidoglycan layer instead of the peptide crosslink, implicating the tertiary structure of peptidoglycan as the recognition motif of endolysins.


Assuntos
Bacillus cereus/virologia , Bacteriófagos/patogenicidade , Endopeptidases/química , Endopeptidases/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Bacillus cereus/citologia , Bacillus cereus/metabolismo , Bacteriófagos/metabolismo , Sítios de Ligação , Parede Celular/química , Parede Celular/metabolismo , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
20.
ACS Nano ; 13(8): 8766-8783, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31310506

RESUMO

Complex amyloid aggregation of amyloid-ß (1-40) (Aß1-40) in terms of monomer structures has not been fully understood. Herein, we report the microscopic mechanism and pathways of Aß1-40 aggregation with macroscopic viewpoints through tuning its initial structure and solubility. Partial helical structures of Aß1-40 induced by low solvent polarity accelerated cytotoxic Aß1-40 amyloid fibrillation, while predominantly helical folds did not aggregate. Changes in the solvent polarity caused a rapid formation of ß-structure-rich protofibrils or oligomers via aggregation-prone helical structures. Modulation of the pH and salt concentration transformed oligomers to protofibrils, which proceeded to amyloid formation. We reveal diverse molecular mechanisms underlying Aß1-40 aggregation with conceptual energy diagrams and propose that aggregation-prone partial helical structures are key to inducing amyloidogenesis. We demonstrate that context-dependent protein aggregation is comprehensively understood using the macroscopic phase diagram, which provides general insights into differentiation of amyloid formation and phase separation from unfolded and folded structures.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/ultraestrutura , Fragmentos de Peptídeos/ultraestrutura , Agregação Patológica de Proteínas/genética , Conformação Proteica em alfa-Hélice/genética , Doença de Alzheimer/patologia , Amiloide/química , Amiloide/genética , Peptídeos beta-Amiloides/química , Humanos , Fragmentos de Peptídeos/química , Conformação Proteica em Folha beta/genética , Dobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA