RESUMO
Physical neural networks made of analog resistive switching processors are promising platforms for analog computing. State-of-the-art resistive switches rely on either conductive filament formation or phase change. These processes suffer from poor reproducibility or high energy consumption, respectively. Herein, we demonstrate the behavior of an alternative synapse design that relies on a deterministic charge-controlled mechanism, modulated electrochemically in solid-state. The device operates by shuffling the smallest cation, the proton, in a three-terminal configuration. It has a channel of active material, WO3. A solid proton reservoir layer, PdHx, also serves as the gate terminal. A proton conducting solid electrolyte separates the channel and the reservoir. By protonation/deprotonation, we modulate the electronic conductivity of the channel over seven orders of magnitude, obtaining a continuum of resistance states. Proton intercalation increases the electronic conductivity of WO3 by increasing both the carrier density and mobility. This switching mechanism offers low energy dissipation, good reversibility, and high symmetry in programming.
RESUMO
The band gap of formamidinium lead iodide (FAPbI3) perovskites allows broader absorption of the solar spectrum relative to conventional methylammonium lead iodide (MAPbI3). Because the optoelectronic properties of perovskite films are closely related to film quality, deposition of dense and uniform films is crucial for fabricating high-performance perovskite solar cells (PSCs). We report an approach for depositing high-quality FAPbI3 films, involving FAPbI3 crystallization by the direct intramolecular exchange of dimethylsulfoxide (DMSO) molecules intercalated in PbI2 with formamidinium iodide. This process produces FAPbI3 films with (111)-preferred crystallographic orientation, large-grained dense microstructures, and flat surfaces without residual PbI2. Using films prepared by this technique, we fabricated FAPbI3-based PSCs with maximum power conversion efficiency greater than 20%.
RESUMO
Of the many materials and methodologies aimed at producing low-cost, efficient photovoltaic cells, inorganic-organic lead halide perovskite materials appear particularly promising for next-generation solar devices owing to their high power conversion efficiency. The highest efficiencies reported for perovskite solar cells so far have been obtained mainly with methylammonium lead halide materials. Here we combine the promising-owing to its comparatively narrow bandgap-but relatively unstable formamidinium lead iodide (FAPbI3) with methylammonium lead bromide (MAPbBr3) as the light-harvesting unit in a bilayer solar-cell architecture. We investigated phase stability, morphology of the perovskite layer, hysteresis in current-voltage characteristics, and overall performance as a function of chemical composition. Our results show that incorporation of MAPbBr3 into FAPbI3 stabilizes the perovskite phase of FAPbI3 and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination of 100 milliwatts per square centimetre. These findings further emphasize the versatility and performance potential of inorganic-organic lead halide perovskite materials for photovoltaic applications.
RESUMO
Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH3NH3 Pb(I(1-x)Br(x))3 (x = 0.1-0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH3NH3I-PbI2-DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.
RESUMO
We report on the fabrication of PbS/CH3NH3PbI3 (=MAP) core/shell quantum dot (QD)-sensitized inorganic-organic heterojunction solar cells on top of mesoporous (mp) TiO2 electrodes with hole transporting polymers (P3HT and PEDOT: PSS). The PbS/MAP core/shell QDs were in situ-deposited by a modified successive ionic layer adsorption and reaction (SILAR) process using PbI2 and Na2S solutions with repeated spin-coating and subsequent dipping into CH3NH3I (=MAI) solution in the final stage. The resulting device showed much higher efficiency as compared to PbS QD-sensitized solar cells without a MAP shell layer, reaching an overall efficiency of 3.2% under simulated solar illumination (AM1.5, 100 mW·cm(-2)). From the measurement of the impedance spectroscopy and the time-resolved photoluminescence (PL) decay, the significantly enhanced performance is mainly attributed to both reduced charge recombination and better charge extraction by MAP shell layer. In addition, we demonstrate that the MAP shell effectively prevented the photocorrosion of PbS, resulting in highly improved stability in the cell efficiency with time. Therefore, our approach provides method for developing high performance QD-sensitized solar cells.