Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39071440

RESUMO

Phase separation forms membraneless compartments in the nuclei, including by establishing heterochromatin "domains" and repair foci. Pericentromeric heterochromatin mostly comprises repeated sequences prone to aberrant recombination, and "safe" homologous recombination (HR) repair of these sequences requires the movement of repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. How this mobilization initiates is unknown, and the contribution of phase separation to these dynamics is unclear. Here, we show that Nup98 nucleoporin is recruited to heterochromatic repair sites before relocalization through Sec13 or Nup88 nucleoporins, and downstream from the Smc5/6 complex and SUMOylation. Remarkably, the phase separation properties of Nup98 are required and sufficient to mobilize repair sites and exclude Rad51, thus preventing aberrant recombination while promoting HR repair. Disrupting this pathway results in heterochromatin repair defects and widespread chromosome rearrangements, revealing a novel "off-pore" role for nucleoporins and phase separation in nuclear dynamics and genome integrity in a multicellular eukaryote.

2.
MicroPubl Biol ; 20242024.
Artigo em Inglês | MEDLINE | ID: mdl-38737725

RESUMO

Pericentromeric heterochromatin mostly comprises repeated DNA sequences prone to ectopic recombination. In Drosophila cells, 'safe' homologous recombination repair requires relocalization of heterochromatic repair sites to the nuclear periphery before Rad51 recruitment and strand invasion. DSBs are anchored to the nuclear periphery through the Nup107/160 nucleoporin complex. Previous studies suggested that the nuclear pore 'basket' protein Nup153 could also mediate anchoring, but Nup153 RNAi depletion also affects Nup107 association with the pores, preventing a direct assessment of Nup153 role. Using a separation of function mutant, here we show that Nup153 is not required for anchoring heterochromatic DSBs to the nuclear periphery.

3.
J Hazard Mater ; 452: 131241, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36958166

RESUMO

Exploring pore structures that are optically transparent and have high filtration efficiency for ultrafine dust is very important for realizing passive window filters for indoor air purification. Herein, a polyester track-etched (PETE) membrane with vertically perforated micropores is investigated as a cost-effective candidate for transparent window filters. The pore size, which governs transparency and filtration efficiency, can be precisely tuned by conformally depositing an ultrathin oxide layer on the PETE membrane via atomic layer deposition. The maximum visible light transmittance (∼81.2 %) was achieved with an alumina layer of approximately 55 nm, and the resulting composite membrane exhibited competitive filtration efficiency compared to commercial products. The chemically inert alumina layer also increased resistance to various external stimuli and enabled simple cleaning of the contaminated membrane surface with a solvent. The membrane installed on an insect screen effectively maintained its filtration performance (∼85 % for PM2.5) even after 10 reuse cycles under extremely harsh conditions (PM2.5 concentration: ∼5000 µg cm-3). The proposed through-hole composite membrane can expand the choice of aesthetic window filters to situations that require high outside visibility and daylighting.

4.
Nature ; 559(7712): 54-60, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29925946

RESUMO

Heterochromatin mainly comprises repeated DNA sequences that are prone to ectopic recombination. In Drosophila cells, 'safe' repair of heterochromatic double-strand breaks by homologous recombination relies on the relocalization of repair sites to the nuclear periphery before strand invasion. The mechanisms responsible for this movement were unknown. Here we show that relocalization occurs by directed motion along nuclear actin filaments assembled at repair sites by the Arp2/3 complex. Relocalization requires nuclear myosins associated with the heterochromatin repair complex Smc5/6 and the myosin activator Unc45, which is recruited to repair sites by Smc5/6. ARP2/3, actin nucleation and myosins also relocalize heterochromatic double-strand breaks in mouse cells. Defects in this pathway result in impaired heterochromatin repair and chromosome rearrangements. These findings identify de novo nuclear actin filaments and myosins as effectors of chromatin dynamics for heterochromatin repair and stability in multicellular eukaryotes.


Assuntos
Citoesqueleto de Actina/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Heterocromatina/metabolismo , Movimento , Miosinas/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Animais , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Heterocromatina/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Chaperonas Moleculares , Reparo de DNA por Recombinação
5.
Trends Genet ; 33(2): 86-100, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28104289

RESUMO

Repairing double-strand breaks (DSBs) is particularly challenging in pericentromeric heterochromatin, where the abundance of repeated sequences exacerbates the risk of ectopic recombination and chromosome rearrangements. Recent studies in Drosophila cells revealed that faithful homologous recombination (HR) repair of heterochromatic DSBs relies on the relocalization of DSBs to the nuclear periphery before Rad51 recruitment. We summarize here the exciting progress in understanding this pathway, including conserved responses in mammalian cells and surprising similarities with mechanisms in yeast that deal with DSBs in distinct sites that are difficult to repair, including other repeated sequences. We will also point out some of the most important open questions in the field and emerging evidence suggesting that deregulating these pathways might have dramatic consequences for human health.


Assuntos
Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Heterocromatina/genética , Animais , Drosophila/genética , Humanos , Rad51 Recombinase/genética , Reparo de DNA por Recombinação/genética
6.
Nucleus ; 7(5): 485-497, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27673416

RESUMO

Repairing double-strand breaks (DSBs) is particularly challenging in heterochromatin, where the abundance of repeated sequences exacerbates the risk of ectopic recombination and chromosome rearrangements. In Drosophila cells, faithful homologous recombination (HR) repair of heterochromatic DSBs relies on a specialized pathway that relocalizes repair sites to the nuclear periphery before Rad51 recruitment. Here we show that HR progression is initially blocked inside the heterochromatin domain by SUMOylation and the coordinated activity of two distinct Nse2 SUMO E3 ligases: Quijote (Qjt) and Cervantes (Cerv). In addition, the SUMO-targeted ubiquitin ligase (STUbL) Dgrn, but not its partner dRad60, is recruited to heterochromatic DSBs at early stages of repair and mediates relocalization. However, Dgrn is not required to prevent Rad51 recruitment inside the heterochromatin domain, suggesting that the block to HR progression inside the domain and relocalization to the nuclear periphery are genetically separable pathways. Further, SUMOylation defects affect relocalization without blocking heterochromatin expansion, revealing that expansion is not required for relocalization. Finally, nuclear pores and inner nuclear membrane proteins (INMPs) anchor STUbL/RENi components and repair sites to the nuclear periphery, where repair continues. Together, these studies reveal a critical role of SUMOylation and nuclear architecture in the spatial and temporal regulation of heterochromatin repair and the protection of genome integrity.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Heterocromatina/genética , Recombinação Homóloga , Ligases/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , Proteínas de Drosophila/genética , Drosophila melanogaster , Heterocromatina/metabolismo , Humanos , Sumoilação/genética
7.
Genetics ; 203(2): 667-75, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27075725

RESUMO

We have previously shown that a recombination execution checkpoint (REC) regulates the choice of the homologous recombination pathway used to repair a given DNA double-strand break (DSB) based on the homology status of the DSB ends. If the two DSB ends are synapsed with closely-positioned and correctly-oriented homologous donors, repair proceeds rapidly by the gene conversion (GC) pathway. If, however, homology to only one of the ends is present, or if homologies to the two ends are situated far away from each other or in the wrong orientation, REC blocks the rapid initiation of new DNA synthesis from the synapsed end(s) and repair is carried out by the break-induced replication (BIR) machinery after a long pause. Here we report that the simultaneous deletion of two 3'→5' helicases, Sgs1 and Mph1, largely abolishes the REC-mediated lag normally observed during the repair of large gaps and BIR substrates, which now get repaired nearly as rapidly and efficiently as GC substrates. Deletion of SGS1 and MPH1 also produces a nearly additive increase in the efficiency of both BIR and long gap repair; this increase is epistatic to that seen upon Rad51 overexpression. However, Rad51 overexpression fails to mimic the acceleration in repair kinetics that is produced by sgs1Δ mph1Δ double deletion.


Assuntos
RNA Helicases DEAD-box/metabolismo , RecQ Helicases/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , RNA Helicases DEAD-box/genética , Deleção de Genes , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
8.
Nat Cell Biol ; 17(11): 1401-11, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26502056

RESUMO

Heterochromatin mostly comprises repeated sequences prone to harmful ectopic recombination during double-strand break (DSB) repair. In Drosophila cells, 'safe' homologous recombination (HR) repair of heterochromatic breaks relies on a specialized pathway that relocalizes damaged sequences away from the heterochromatin domain before strand invasion. Here we show that heterochromatic DSBs move to the nuclear periphery to continue HR repair. Relocalization depends on nuclear pores and inner nuclear membrane proteins (INMPs) that anchor repair sites to the nuclear periphery through the Smc5/6-interacting proteins STUbL/RENi. Both the initial block to HR progression inside the heterochromatin domain, and the targeting of repair sites to the nuclear periphery, rely on SUMO and SUMO E3 ligases. This study reveals a critical role for SUMOylation in the spatial and temporal regulation of HR repair in heterochromatin, and identifies the nuclear periphery as a specialized site for heterochromatin repair in a multicellular eukaryote.


Assuntos
Núcleo Celular/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Heterocromatina/genética , Reparo de DNA por Recombinação , Animais , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Heterocromatina/metabolismo , Hibridização in Situ Fluorescente , Mutação , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Imagem com Lapso de Tempo/métodos
9.
J Korean Soc Coloproctol ; 28(5): 275-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23185709

RESUMO

Tuberculosis of the sigmoid colon is a rare disorder. An 80-year-old man visited Bongseng Memorial Hospital for medical examination. A colonoscopy was performed, and a lesion in the sigmoid colon that was suspected to be colon cancer was found. A biopsy was performed, and tuberculous enteritis with chronic granulomatous inflammation was diagnosed. Intestinal tuberculosis is most frequent in the ileocecal area, followed by the ascending colon, transverse colon, duodenum, stomach, and sigmoid colon, in descending order. Hence, we report a case of intestinal tuberculosis in the sigmoid colon, which is rare and almost indistinguishable from colon cancer.

10.
Genetics ; 189(4): 1225-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21954161

RESUMO

One of the least understood aspects of homologous recombination is the process by which the ends of a double-strand break (DSB) search the entire genome for homologous templates that can be used to repair the break. We took advantage of the natural competition between the alternative donors HML and HMR employed during HO endonuclease-induced switching of the budding yeast MAT locus. The strong mating-type-dependent bias in the choice of the donors is enforced by the recombination enhancer (RE), which lies 17 kb proximal to HML. We investigated factors that improve the use of the disfavored donor. We show that the normal heterochromatic state of the donors does not impair donor usage, as donor choice is not affected by removing this epigenetic silencing. In contrast, increasing the length of homology shared by the disfavored donor increases its use. This result shows that donor choice is not irrevocable and implies that there are several encounters between the DSB ends and even the favored donor before recombination is accomplished. The increase by adding more homology is not linear; these results can be explained by a thermodynamic model that determines the energy cost of using one donor over the other. An important inference from this analysis is that when HML is favored as the donor, RE causes a reduction in its effective genomic distance from MAT from 200 kb to ∼20 kb, which we hypothesize occurs after the DSB is created, by epigenetic chromatin modifications around MAT.


Assuntos
Conversão Gênica , Saccharomyces cerevisiae/genética , Inativação Gênica , Genes Fúngicos , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA