RESUMO
A simple technique for observing optically stimulated electron paramagnetic resonance (OSEPR) is proposed and investigated. The versatility and information content of the described technique is demonstrated by the example of the OSEPR spectra of systems that are unpopular for this type of spectroscopy: a crystal with rare-earth ions Nd3+ and a doped semiconductor GaAs. In addition, the OSEPR spectrum of atomic cesium is presented, in which an optical nonlinearity is observed that makes it possible to estimate the Rabi frequency for the relevant optical transition. The effects observed in the described experiments (switching of peaks to dips, light-induced splitting of the OSEPR lines, and the appearance of a spectral feature at the double-Larmor frequency) are interpreted using the model proposed in the theoretical part of the work. The suggested interpretation shows the possibility of using the described OSEPR technique to estimate not only 'magnetic' parameters of the model Hamiltonian (g-factors, spin relaxation times), but also the Rabi frequencies characterizing optical transitions.
RESUMO
It is known that linear birefringence of the medium essentially hinders measuring the Faraday effect. For this reason, optically anisotropic materials have never been considered as objects of the Faraday-rotation-based spin noise spectroscopy. We show, both theoretically and experimentally, that strong optical anisotropy that may badly suppress the regular Faraday rotation of the medium, practically does not affect the measurement of the spatially uncorrelated spin fluctuations. We also show that the birefringent media provide additional opportunity to measure spatial spin correlations. Results of the experimental measurements of the spin-noise spectra performed on Nd^{3+} ions in the uniaxial crystal matrices well agree with the theory.
RESUMO
The mechanism of formation of the polarimetric signal observed in the spin noise spectroscopy (SNS) is analyzed from the viewpoint of the light scattering theory. A rigorous calculation of the polarimetric signal (Faraday rotation or ellipticity) recorded in the SNS is presented in the approximation of single scattering. We show that it is most correctly to consider this noise as a result of scattering of the probe light beam by fluctuating susceptibility of the medium. Fluctuations of the gyrotropic (antisymmetric) part of the susceptibility tensor lead to appearance of the typical for the SNS Faraday rotation noise at the Larmor frequency. At the same time, fluctuations of linear anisotropy of the medium (symmetric part of the susceptibility tensor) give rise to the ellipticity noise of the probe beam spectrally localized at the double Larmor frequency. The results of the theoretical analysis well agree with the experimental data on the ellipticity noise in cesium vapor.