RESUMO
High-grade gliomas are considered an incurable disease. Despite all the various therapy options available, patient survival remains low, and the tumor usually returns. Tumor resistance to conventional therapy and stimulation of the migratory activity of surviving cells are the main factors that lead to recurrent tumors. When developing new treatment approaches, the effect is most often evaluated on standard and phenotypically depleted cancer cell lines. Moreover, there is much focus on the anti-proliferative effect of such therapies without considering the possible stimulation of migratory activity. In this paper, we studied how glioma cell migration changes after exposure to bi-(AID-1-T), an anti-proliferative aptamer. We investigated the effect of this aptamer on eight human glioma cell cultures (Grades III and IV) that were derived from patients' tumor tissue; the difference between primary and recurrent tumors was taken into account. Despite its strong anti-proliferative activity, bi-(AID-1-T) was shown to induce migration of recurrent tumor cells. This result shows the importance of studying the effect of therapeutic molecules on the invasive properties of glioma tumor cells in order to reduce the likelihood of inducing tumor recurrence.
RESUMO
Central nervous system (CNS) tumors in children comprise a highly heterogenous and complex group of diseases. Historically, diagnosis and confirmation of these tumors were routinely based on histological examination. However, recently obtained data demonstrate that such a diagnostic approach is not completely accurate and could lead to misdiagnosis. Also, in recent times, the quantity and quality of molecular diagnostic methods have greatly improved, which influences the current classification methods and treatment approach for pediatric CNS tumors. Nowadays, molecular methods, such as DNA methylation profiling, are an integral part of diagnosing brain and spinal tumors in children. In this paper, we present the case of an infant with a posterior fossa tumor who demonstrated a non-specific morphology and whose diagnosis was verified only after DNA methylation.
RESUMO
Medulloblastoma is the primary malignant embryonic tumor of the cerebellum and the most common malignant tumor of childhood, accounting up to 25% of all CNS tumors in children, but is extremely rare in adults. Despite the fact that medulloblastomas are one of the most malignant human tumors, it is worthy to note that a great breakthrough has been achieved in our understanding of oncogenesis and the development of real methods of treatment. The main objective of surgical treatment is a maximum resection of tumor with minimal impairment of neurological functions, in order to reduce the volume, remove tumor tissue, get the biopsy, and restore the cerebrospinal fluid flow. The progress of surgical techniques (using a microscope, ultrasound suction), anesthesiology, and intensive care has significantly decreased surgical mortality and increased radicality of tumor removal. Postoperative mortality is less than one percent in most studies, while neurological complications have been reported between 5-10%. Radiotherapy is the main method of treatment in patients older than 3 years, which dramatically improved the recurrence-free survival. Nevertheless, the radiation therapy without systemic chemotherapy leads to a high risk of systemic metastases. After the role of chemotherapy was statistically proven, investigations of the optimal combination of different chemotherapy regimens continued around the world. Currently, 80% of patients can already be cured, however, the quality of life of patients in the long-term period remains quite low, which depends on many factors including endocrinological, cognitive, neurological, and otoneurologic aspects. Thus, the main strategic goal of the development of neuro-oncology is to reduce the doses of radiation therapy to the CNS and the main task of international research is to optimize existing protocols and develop fundamentally new ones based on molecular genetic research in order to improve the quality of life.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Criança , Humanos , Adulto , Meduloblastoma/terapia , Qualidade de Vida , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/radioterapiaRESUMO
Background: Chronic subdural hematomas (cSDHs) are frequent and potentially life-threatening neurosurgical conditions affecting, first of all, elderly. Few treatment options are available ranging from observation to removal thought large craniotomy. However, currently, there is tendency to minimize surgical aggression, especially considering poor general condition of elderly patients. Thus, one of gaining popularity method of neurointerventional treatment of cSDHs is medial meningeal artery (MMA) embolization. To date, large series of cases published describing favorable outcomes of this treatment approach. At the same time, few reports are available that describe microstructural changes in cSDH's capsule after embolization; meanwhile, no exact effect of embolization on pathophysiology of hematoma was determined. Case Description: Through current paper, we present two cases of cSDH that has previously undergone embolization of MMA, after which cSDHs have been operated through minicraniotomy due to complications after artery embolization. Microstructural changes of hematoma's capsule are described and discussed. Conclusion: Histological changes in embolized capsule suggest embolization of MMA as a valuable method for treatment of cSDHs.
RESUMO
PURPOSE: International consensus and the 2021 WHO classification recognize eight molecular subgroups among non-WNT/non-SHH (Group 3/4) medulloblastoma, representing approximately 60% of tumors. However, very few clinical centers worldwide possess the technical capabilities to determine DNA methylation profiles or other molecular parameters of high risk for group 3/4 tumors. As a result, biomarker-driven risk stratification and therapy assignment constitutes a major challenge in medulloblastoma research. Here, we identify an IHC marker as a clinically tractable method for improved medulloblastoma risk stratification. EXPERIMENTAL DESIGN: We bioinformatically analyzed published medulloblastoma transcriptomes and proteomes identifying as a potential biomarker TPD52, whose IHC prognostic value was validated across three group 3/4 medulloblastoma clinical cohorts (n = 387) treated with conventional therapies. RESULTS: TPD52 IHC positivity represented a significant independent predictor of early relapse and death for group 3/4 medulloblastoma [HRs between 3.67 and 26.7; 95% confidence interval (CI) between 1.00 and 706.23; P = 0.05, 0.017, and 0.0058]. Cross-validated survival models incorporating TPD52 IHC with clinical features outperformed existing state-of-the-art risk stratification schemes, and reclassified approximately 50% of patients into more appropriate risk categories. Finally, TPD52 immunopositivity was a predictive indicator of poor response to chemotherapy [HR, 12.66; 95% CI, 3.53-45.40; P < 0.0001], suggesting important implication for therapeutic choices. CONCLUSIONS: This study redefines the approach to risk stratification in group 3/4 medulloblastoma in global practice. Because integration of TPD52 IHC in classification algorithms significantly improved outcome prediction, this test could be rapidly adopted for risk stratification on a global scale, independently of advanced but technically challenging molecular profiling techniques.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Biomarcadores Tumorais/genética , Neoplasias Cerebelares/diagnóstico , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/terapia , Humanos , Imuno-Histoquímica , Meduloblastoma/diagnóstico , Meduloblastoma/genética , Meduloblastoma/terapia , Proteínas de Neoplasias , Prognóstico , Fatores de TranscriçãoRESUMO
Long-term complications such as radiation-induced second malignancies occur in a subset of patients following radiation-therapy, particularly relevant in pediatric patients due to the long follow-up period in case of survival. Radiation-induced gliomas (RIGs) have been reported in patients after treatment with cranial irradiation for various primary malignancies such as acute lymphoblastic leukemia (ALL) and medulloblastoma (MB). We perform comprehensive (epi-) genetic and expression profiling of RIGs arising after cranial irradiation for MB (n = 23) and ALL (n = 9). Our study reveals a unifying molecular signature for the majority of RIGs, with recurrent PDGFRA amplification and loss of CDKN2A/B and an absence of somatic hotspot mutations in genes encoding histone 3 variants or IDH1/2, uncovering diagnostic markers and potentially actionable targets.
Assuntos
Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Amplificação de Genes , Glioma/genética , Recidiva Local de Neoplasia/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Adolescente , Adulto , Criança , Deleção Cromossômica , Análise por Conglomerados , Metilação de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico/genética , Genoma Humano , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Radiação , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transcrição Gênica , Adulto JovemRESUMO
Adult cerebellar anaplastic astrocytomas (cAA) are rare entities and their clinical and genetic appearances are still ill defined. Previously, malignant gliomas of the cerebellum were combined and reviewed together (cAA and cerebellar glioblastomas (cGB), that could have possibly affected overall survival (OS) and progression-free survival (PFS). We present characteristics of 15 adult patients with cAA and compared them to a series of 45 patients with a supratentorial AA (sAA) in order to elicit the effect of tumor location on OS and PFS. The mean age at cAA diagnosis was 39.3 years (range 19-72). A history of neurofibromatosis type I was noted in 1 patient (6.7%). An IDH-1 mutation was identified in 6/15 cases and a methylated MGMT promoter in 5/15 cases. Patients in study and control groups were matched in age, sex and IDH-1 mutation status. Patients in a study group tended to present with longer overall survival (50 vs. 36.5 months), but the difference did not reach statistical significance. In both cAA and supratentorial AA groups presence of the IDH-1 mutation remains a positive predictor for the prolonged survival. The present study suggests that adult cAA constitute a group of gliomas with relatively higher rate of IDH-1 mutations and prognosis similar to supratentorial AA. The present study is the first to systematically compare cAA and supratentorial AA with respect to their genetic characteristics and suggests that both groups show a similar survival prognosis.
Assuntos
Astrocitoma , Neoplasias Encefálicas , Adulto , Idoso , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Humanos , Isocitrato Desidrogenase/genética , Pessoa de Meia-Idade , Mutação , Prognóstico , Adulto JovemRESUMO
Medulloblastoma, a common pediatric malignant central nervous system tumour, represent a small proportion of brain tumours in adults. Previously it has been shown that in adults, Sonic Hedgehog (SHH)-activated tumours predominate, with Wingless-type (WNT) and Group 4 being less common, but molecular risk stratification remains a challenge. We performed an integrated analysis consisting of genome-wide methylation profiling, copy number profiling, somatic nucleotide variants and correlation of clinical variables across a cohort of 191 adult medulloblastoma cases identified through the Medulloblastoma Advanced Genomics International Consortium. We identified 30 WNT, 112 SHH, 6 Group 3, and 41 Group 4 tumours. Patients with SHH tumours were significantly older at diagnosis compared to other subgroups (p < 0.0001). Five-year progression-free survival (PFS) for WNT, SHH, Group 3, and Group 4 tumours was 64.4 (48.0-86.5), 61.9% (51.6-74.2), 80.0% (95% CI 51.6-100.0), and 44.9% (95% CI 28.6-70.7), respectively (p = 0.06). None of the clinical variables (age, sex, metastatic status, extent of resection, chemotherapy, radiotherapy) were associated with subgroup-specific PFS. Survival among patients with SHH tumours was significantly worse for cases with chromosome 3p loss (HR 2.9, 95% CI 1.1-7.6; p = 0.02), chromosome 10q loss (HR 4.6, 95% CI 2.3-9.4; p < 0.0001), chromosome 17p loss (HR 2.3, 95% CI 1.1-4.8; p = 0.02), and PTCH1 mutations (HR 2.6, 95% CI 1.1-6.2; p = 0.04). The prognostic significance of 3p loss and 10q loss persisted in multivariable regression models. For Group 4 tumours, chromosome 8 loss was strongly associated with improved survival, which was validated in a non-overlapping cohort (combined cohort HR 0.2, 95% CI 0.1-0.7; p = 0.007). Unlike in pediatric medulloblastoma, whole chromosome 11 loss in Group 4 and chromosome 14q loss in SHH was not associated with improved survival, where MYCN, GLI2 and MYC amplification were rare. In sum, we report unique subgroup-specific cytogenetic features of adult medulloblastoma, which are distinct from those in younger patients, and correlate with survival disparities. Our findings suggest that clinical trials that incorporate new strategies tailored to high-risk adult medulloblastoma patients are urgently needed.
Assuntos
Neoplasias Cerebelares/genética , Meduloblastoma/genética , Adolescente , Adulto , Biomarcadores Tumorais/genética , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Estudos de Coortes , Feminino , Humanos , Masculino , Meduloblastoma/mortalidade , Meduloblastoma/patologia , Intervalo Livre de Progressão , Fatores de Risco , Adulto JovemRESUMO
BACKGROUND: Only few data are available on treatment-associated behavior of distinct rare CNS embryonal tumor entities previously treated as "CNS-primitive neuroectodermal tumors" (CNS-PNET). Respective data on specific entities, including CNS neuroblastoma, FOXR2 activated (CNS NB-FOXR2), and embryonal tumors with multilayered rosettes (ETMR) are needed for development of differentiated treatment strategies. METHODS: Within this retrospective, international study, tumor samples of clinically well-annotated patients with the original diagnosis of CNS-PNET were analyzed using DNA methylation arrays (n = 307). Additional cases (n = 66) with DNA methylation pattern of CNS NB-FOXR2 were included irrespective of initial histological diagnosis. Pooled clinical data (n = 292) were descriptively analyzed. RESULTS: DNA methylation profiling of "CNS-PNET" classified 58 (19%) cases as ETMR, 57 (19%) as high-grade glioma (HGG), 36 (12%) as CNS NB-FOXR2, and 89(29%) cases were classified into 18 other entities. Sixty-seven (22%) cases did not show DNA methylation patterns similar to established CNS tumor reference classes. Best treatment results were achieved for CNS NB-FOXR2 patients (5-year PFS: 63% ± 7%, OS: 85% ± 5%, n = 63), with 35/42 progression-free survivors after upfront craniospinal irradiation (CSI) and chemotherapy. The worst outcome was seen for ETMR and HGG patients with 5-year PFS of 18% ± 6% and 22% ± 7%, and 5-year OS of 24% ± 6% and 25% ± 7%, respectively. CONCLUSION: The historically reported poor outcome of CNS-PNET patients becomes highly variable when tumors are molecularly classified based on DNA methylation profiling. Patients with CNS NB-FOXR2 responded well to current treatments and a standard-risk CSI-based regimen may be prospectively evaluated. The poor outcome of ETMR across applied treatment strategies substantiates the necessity for evaluation of novel treatments.
Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias Embrionárias de Células Germinativas , Tumores Neuroectodérmicos Primitivos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/terapia , Fatores de Transcrição Forkhead , Humanos , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/terapia , Tumores Neuroectodérmicos Primitivos/diagnóstico , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/terapia , Patologia Molecular , Estudos RetrospectivosRESUMO
BACKGROUND: Therapeutic intervention in metastatic medulloblastoma is dependent on elucidating the underlying metastatic mechanism. We investigated whether an epithelial-mesenchymal transition (EMT)-like pathway could drive medulloblastoma metastasis. METHODS: A 3D Basement Membrane Extract (3D-BME) model was used to investigate medulloblastoma cell migration. Cell line growth was quantified with AlamarBlue metabolic assays and the morphology assessed by time-lapse imaging. Gene expression was analyzed by qRT-PCR and protein expression by immunohistochemistry of patient tissue microarrays and mouse orthotopic xenografts. Chromatin immunoprecipitation was used to determine whether the EMT transcription factor TWIST1 bound to the promoter of the multidrug pump ABCB1. TWIST1 was overexpressed in MED6 cells by lentiviral transduction (MED6-TWIST1). Inhibition of ABCB1 was mediated by vardenafil, and TWIST1 expression was reduced by either Harmine or shRNA. RESULTS: Metastatic cells migrated to form large metabolically active aggregates, whereas non-tumorigenic/non-metastatic cells formed small aggregates with decreasing metabolic activity. TWIST1 expression was upregulated in the 3D-BME model. TWIST1 and ABCB1 were significantly associated with metastasis in patients (P = .041 and P = .04, respectively). High nuclear TWIST1 expression was observed in the invasive edge of the MED1 orthotopic model, and TWIST1 knockdown in cell lines was associated with reduced cell migration (P < .05). TWIST1 bound to the ABCB1 promoter (P = .03) and induced cell aggregation in metastatic and TWIST1-overexpressing, non-metastatic (MED6-TWIST1) cells, which was significantly attenuated by vardenafil (P < .05). CONCLUSIONS: In this study, we identified a TWIST1-ABCB1 signaling axis during medulloblastoma migration, which can be therapeutically targeted with the clinically approved ABCB1 inhibitor, vardenafil.
RESUMO
Molecular groups of supratentorial ependymomas comprise tumors with ZFTA-RELA or YAP1-involving fusions and fusion-negative subependymoma. However, occasionally supratentorial ependymomas cannot be readily assigned to any of these groups due to lack of detection of a typical fusion and/or ambiguous DNA methylation-based classification. An unbiased approach with a cohort of unprecedented size revealed distinct methylation clusters composed of tumors with ependymal but also various other histologic features containing alternative translocations that shared ZFTA as a partner gene. Somatic overexpression of ZFTA-associated fusion genes in the developing cerebral cortex is capable of inducing tumor formation in vivo, and cross-species comparative analyses identified GLI2 as a key downstream regulator of tumorigenesis in all tumors. Targeting GLI2 with arsenic trioxide caused extended survival of tumor-bearing animals, indicating a potential therapeutic vulnerability in ZFTA fusion-positive tumors. SIGNIFICANCE: ZFTA-RELA fusions are a hallmark feature of supratentorial ependymoma. We find that ZFTA acts as a partner for alternative transcriptional activators in oncogenic fusions of supratentorial tumors with various histologic characteristics. Establishing representative mouse models, we identify potential therapeutic targets shared by ZFTA fusion-positive tumors, such as GLI2.This article is highlighted in the In This Issue feature, p. 2113.
Assuntos
Proteínas de Ligação a DNA/genética , Ependimoma/genética , Proteínas/genética , Neoplasias Supratentoriais/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ependimoma/patologia , Genômica , Humanos , Camundongos , Neoplasias Supratentoriais/patologiaRESUMO
Adult pilocytic astrocytomas (PAs) have been regarded as indistinguishable from pediatric PAs in terms of genome-wide expression and methylation patterns. It has been unclear whether adult PAs arise early in life and remain asymptomatic until adulthood, or whether they develop during adulthood. We sought to determine the age and origin of adult human PAs using two types of "marks" in the genomic DNA. First, we analyzed the DNA methylation patterns of adult and pediatric PAs to distinguish between PAs of different anatomic locations (n = 257 PA and control brain tissues). Second, we measured the concentration of nuclear bomb test-derived 14C in genomic DNA (n = 14 cases), which indicates the time point of the formation of human cell populations. Our data suggest that adult and pediatric PAs developing in the infratentorial brain are closely related and potentially develop from precursor cells early in life, whereas supratentorial PAs might show age and location-specific differences.
Assuntos
Astrocitoma/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Humanos , Incidência , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Adulto JovemRESUMO
Low-grade gliomas (LGGs) are the most common childhood brain tumor in the general population and in individuals with the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome. Surgical biopsy is rarely performed prior to treatment in the setting of NF1, resulting in a paucity of tumor genomic information. To define the molecular landscape of NF1-associated LGGs (NF1-LGG), we integrated clinical data, histological diagnoses, and multi-level genetic/genomic analyses on 70 individuals from 25 centers worldwide. Whereas, most tumors harbored bi-allelic NF1 inactivation as the only genetic abnormality, 11% had additional mutations. Moreover, tumors classified as non-pilocytic astrocytoma based on DNA methylation analysis were significantly more likely to harbor these additional mutations. The most common secondary alteration was FGFR1 mutation, which conferred an additional growth advantage in multiple complementary experimental murine Nf1 models. Taken together, this comprehensive characterization has important implications for the management of children with NF1-LGG, distinct from their sporadic counterparts.
Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Neurofibromatose 1/complicações , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Camundongos , MutaçãoRESUMO
BACKGROUND: Up to now, adult medulloblastoma (MB) patients are treated according to the protocols elaborated for pediatric MB although these tumors are different in terms of clinical outcomes and biology. Approximately 70% of adult MB disclose a sonic hedgehog (SHH) molecular signature in contrast to about 30% in pediatric cohorts. In addition, adult SHH-MB (aSHH-MB) are clinically heterogeneous but there is consensus neither on their optimal treatment nor on risk stratification. Thus, the identification of clinically relevant molecular subsets of aSHH-MB and identification of potential treatment targets remains inconclusive. METHODS: We analyzed 96 samples of institutionally diagnosed aSHH-MB through genome-wide DNA methylation profiling, targeted DNA sequencing, and RNA sequencing to identify molecular subcategories of these tumors and assess their prognostic significance. RESULTS: We defined two aSHH-MB numerically comparable epigenetic subsets with clinical and molecular variability. The subset "aSHH-MBI" (46%/48%) was associated with PTCH1/SMO (54%/46%) mutations, "neuronal" transcriptional signatures, and favorable outcomes after combined radio-chemotherapy (5-year PFS = 80% and OS = 92%). The clinically unfavorable "aSHH-MBII" subset (50%/52%; 5-year PFS = 24% and OS = 45%) disclosed GLI2 amplifications (8%), loss of 10q (22%), and gene expression signatures associated with angiogenesis and embryonal development. aSHH-MBII tumors revealed strong and ubiquitous expression of VEGFA both at transcript and protein levels that was correlated with unfavorable outcome. CONCLUSIONS: (1) The histologically uniform aSHH-MB cohort exhibits clear molecular heterogeneity separating these tumors into two molecular subsets (aSHH-MBI and aSHH-MBII), which are associated with different cytogenetics, mutational landscapes, gene expression signatures, and clinical course. (2) VEGFA appears to be a promising biomarker to predict clinical course, which needs further prospective validation as its potential role in the pathogenesis of this subset.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Adulto , Neoplasias Cerebelares/genética , Criança , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Prognóstico , Transcriptoma , Fator A de Crescimento do Endotélio VascularRESUMO
Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly malignant neoplasms posing diagnostic challenge due to a lack of defining molecular markers. CNS neuroblastoma with forkhead box R2 (FOXR2) activation (CNS_NBL) emerged as a distinct pediatric brain tumor entity from a pool previously diagnosed as primitive neuroectodermal tumors of the central nervous system (CNS-PNETs). Current standard of identifying CNS_NBL relies on molecular analysis. We set out to establish immunohistochemical markers allowing safely distinguishing CNS_NBL from morphological mimics. To this aim we analyzed a series of 84 brain tumors institutionally diagnosed as CNS-PNET. As expected, epigenetic analysis revealed different methylation groups corresponding to the (1) CNS-NBL (24%), (2) glioblastoma IDH wild-type subclass H3.3 G34 (26%), (3) glioblastoma IDH wild-type subclass MYCN (21%) and (4) ependymoma with RELA_C11orf95 fusion (29%) entities. Transcriptome analysis of this series revealed a set of differentially expressed genes distinguishing CNS_NBL from its mimics. Based on RNA-sequencing data we established SOX10 and ANKRD55 expression as genes discriminating CNS_NBL from other tumors exhibiting CNS-PNET. Immunohistochemical detection of combined expression of SOX10 and ANKRD55 clearly identifies CNS_NBL discriminating them to other hemispheric CNS neoplasms harboring "PNET-like" microscopic appearance. Owing the rarity of CNS_NBL, a confirmation of the elaborated diagnostic IHC algorithm will be necessary in prospective patient series.
Assuntos
Biomarcadores Tumorais/genética , Proteínas de Transporte/genética , Neoplasias do Sistema Nervoso Central , Fatores de Transcrição Forkhead/genética , Neuroblastoma , Tumores Neuroectodérmicos Primitivos/diagnóstico , Tumores Neuroectodérmicos Primitivos/genética , Fatores de Transcrição SOXE/genética , Adolescente , Neoplasias do Sistema Nervoso Central/classificação , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/genética , Neoplasias do Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Metilação de DNA/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Neuroblastoma/diagnóstico , Neuroblastoma/genética , Neuroblastoma/patologia , Tumores Neuroectodérmicos Primitivos/classificação , Tumores Neuroectodérmicos Primitivos/patologiaRESUMO
PURPOSE: We sought to investigate clinical outcomes of relapsed medulloblastoma and to compare molecular features between patient-matched diagnostic and relapsed tumors. METHODS: Children and infants enrolled on either SJMB03 (NCT00085202) or SJYC07 (NCT00602667) trials who experienced medulloblastoma relapse were analyzed for clinical outcomes, including anatomic and temporal patterns of relapse and postrelapse survival. A largely independent, paired molecular cohort was analyzed by DNA methylation array and next-generation sequencing. RESULTS: A total of 72 of 329 (22%) SJMB03 and 52 of 79 (66%) SJYC07 patients experienced relapse with significant representation of Group 3 and wingless tumors. Although most patients exhibited some distal disease (79%), 38% of patients with sonic hedgehog tumors experienced isolated local relapse. Time to relapse and postrelapse survival varied by molecular subgroup with longer latencies for patients with Group 4 tumors. Postrelapse radiation therapy among previously nonirradiated SJYC07 patients was associated with long-term survival. Reirradiation was only temporizing for SJMB03 patients. Among 127 patients with patient-matched tumor pairs, 9 (7%) experienced subsequent nonmedulloblastoma CNS malignancies. Subgroup (96%) and subtype (80%) stabilities were largely maintained among the remainder. Rare subgroup divergence was observed from Group 4 to Group 3 tumors, which is coincident with genetic alterations involving MYC, MYCN, and FBXW7. Subgroup-specific patterns of alteration were identified for driver genes and chromosome arms. CONCLUSION: Clinical behavior of relapsed medulloblastoma must be contextualized in terms of up-front therapies and molecular classifications. Group 4 tumors exhibit slower biological progression. Utility of radiation at relapse is dependent on patient age and prior treatments. Degree and patterns of molecular conservation at relapse vary by subgroup. Relapse tissue enables verification of molecular targets and identification of occult secondary malignancies.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias Cerebelares/genética , Metilação de DNA , Meduloblastoma/genética , Recidiva Local de Neoplasia , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/terapia , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Progressão da Doença , Epigenoma , Epigenômica , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Meduloblastoma/mortalidade , Meduloblastoma/secundário , Meduloblastoma/terapia , Retratamento , Fatores de Tempo , Resultado do TratamentoRESUMO
[This corrects the article DOI: 10.1093/noajnl/vdab030.].
RESUMO
PURPOSE: The HIT-2000-BIS4 trial aimed to avoid highly detrimental craniospinal irradiation (CSI) in children < 4 years of age with nonmetastatic medulloblastoma by systemic chemotherapy, intraventricular methotrexate, and risk-adapted local radiotherapy. PATIENTS AND METHODS: From 2001-2011, 87 patients received systemic chemotherapy and intraventricular methotrexate. Until 2006, CSI was reserved for nonresponse or progression. After 2006, local radiotherapy was introduced for nonresponders or patients with classic medulloblastoma (CMB) or large-cell/anaplastic medulloblastoma (LCA). DNA methylation profiles of infantile sonic hedgehog-activated medulloblastoma (SHH-INF) were subdivided into iSHH-I and iSHH-II subtypes in the HIT-2000-BIS4 cohort and a validation cohort (n = 71) from the HIT group and Russia. RESULTS: Five years after diagnosis, patients with desmoplastic medulloblastoma (DMB) or medulloblastoma with extensive nodularity (MBEN; n = 42) had 93% progression-free survival (5y-PFS), 100% overall survival (5y-OS), and 93% CSI-free (5y-CSI-free) survival. Patients with CMB/LCA (n = 45) had 37% 5y-PFS, 62% 5y-OS, and 39% 5y-CSI-free survival. Local radiotherapy did not improve survival in patients with CMB/LCA. All DMB/MBEN assessed by DNA methylation profiling belonged to the SHH-INF subgroup. Group 3 patients (5y-PFS, 36%; n = 14) relapsed more frequently than the SHH-INF group (5y-PFS, 93%; n = 28) or group 4 patients (5y-PFS, 83%; n = 6; P < .001). SHH-INF split into iSHH-I and iSHH-II subtypes in HIT-2000-BIS4 and the validation cohort, without prognostic impact (5y-PFS: iSHH-I, 73%, v iSHH-II, 83%; P = .25; n = 99). Intelligence quotient (IQ) was significantly lower in patients after CSI (mean IQ, 90 [no radiotherapy], v 74 [CSI]; P = .012). CONCLUSION: Systemic chemotherapy and intraventricular methotrexate led to favorable survival in both iSHH subtypes of SHH-activated DMB/MBEN with acceptable neurotoxicity. Survival in patients with non-wingless (WNT)/non-SHH disease with CMB/LCA was not improved by local radiotherapy. Patients with group 4 disease had more favorable survival rates than those with group 3 medulloblastoma.
Assuntos
Neoplasias Cerebelares/tratamento farmacológico , Meduloblastoma/tratamento farmacológico , Neoplasias Cerebelares/mortalidade , Neoplasias Cerebelares/radioterapia , Pré-Escolar , Irradiação Craniana/efeitos adversos , Metilação de DNA , Feminino , Humanos , Lactente , Masculino , Meduloblastoma/mortalidade , Meduloblastoma/radioterapia , Metotrexato/administração & dosagem , Testes Neuropsicológicos , Estudos ProspectivosRESUMO
Medulloblastoma with extensive nodularity (MBEN) is one of the few central nervous system (CNS) tumor entities occurring in infants which is traditionally associated with good to excellent prognosis. Some MBEN, however, have been reported with an unfavorable clinical course. We performed an integrated DNA/RNA-based molecular analysis of a multi-institutional MBEN cohort (n = 41) to identify molecular events which might be responsible for variability in patients' clinical outcomes. RNA sequencing analysis of this MBEN cohort disclosed two clear transcriptome clusters (TCL) of these CNS tumors: "TCL1 MBEN" and "TCL2 MBEN" which were associated with various gene expression signatures, mutational landscapes and, importantly, prognosis. Thus, the clinically unfavorable "TCL1 MBEN" subset revealed transcriptome signatures composed of cancer-associated signaling pathways and disclosed a high frequency of clinically relevant germline PTCH1/SUFU alterations. In contrast, gene expression profiles of tumors from the clinically favorable "TCL2 MBEN" subgroup were associated with activation of various neurometabolic and neurotransmission signaling pathways, and germline SHH-pathway gene mutations were extremely rare in this transcriptome cluster. "TCL2 MBEN" also revealed strong and ubiquitous expression of VSNL1 (visinin-like protein 1) both at the mRNA and protein level, which was correlated with a favorable clinical course. Thus, combining mutational and epigenetic profiling with transcriptome analysis including VSNL1 immunohistochemistry, MBEN patients could be stratified into clinical risk groups of potential value for subsequent treatment planning.