Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077311

RESUMO

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a heritable neurodegenerative disease characterized by rapid respiratory failure within the first months of life and progressive muscle weakness and wasting. Although the causative gene, IGHMBP2, is well defined, information on IGHMBP2 mutations is not always sufficient to diagnose particular patients, as the gene is highly polymorphic and the pathogenicity of many gene variants is unknown. In this study, we generated a simple yeast model to establish the significance of IGHMBP2 variants for disease development, especially those that are missense mutations. We have shown that cDNA of the human gene encodes protein which is functional in yeast cells and different pathogenic mutations affect this functionality. Furthermore, there is a correlation between the phenotype estimated in in vitro studies and our results, indicating that our model may be used to quickly and simply distinguish between pathogenic and non-pathogenic mutations identified in IGHMBP2 in patients.


Assuntos
Atrofia Muscular Espinal , Doenças Neurodegenerativas , Proteínas de Ligação a DNA/genética , Humanos , Atrofia Muscular Espinal/genética , Mutação , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563497

RESUMO

Mutations in human VPS13A-D genes result in rare neurological diseases, including chorea-acanthocytosis. The pathogenesis of these diseases is poorly understood, and no effective treatment is available. As VPS13 genes are evolutionarily conserved, the effects of the pathogenic mutations could be studied in model organisms, including yeast, where one VPS13 gene is present. In this review, we summarize advancements obtained using yeast. In recent studies, vps13Δ and vps13-I2749 yeast mutants, which are models of chorea-acanthocytosis, were used to screen for multicopy and chemical suppressors. Two of the suppressors, a fragment of the MYO3 and RCN2 genes, act by downregulating calcineurin activity. In addition, vps13Δ suppression was achieved by using calcineurin inhibitors. The other group of multicopy suppressors were genes: FET4, encoding iron transporter, and CTR1, CTR3 and CCC2, encoding copper transporters. Mechanisms of their suppression rely on causing an increase in the intracellular iron content. Moreover, among the identified chemical suppressors were copper ionophores, which require a functional iron uptake system for activity, and flavonoids, which bind iron. These findings point at areas for further investigation in a higher eukaryotic model of VPS13-related diseases and to new therapeutic targets: calcium signalling and copper and iron homeostasis. Furthermore, the identified drugs are interesting candidates for drug repurposing for these diseases.


Assuntos
Neuroacantocitose , Doenças Neurodegenerativas , Proteínas de Saccharomyces cerevisiae , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Cobre/metabolismo , Proteínas de Transporte de Cobre , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Neuromuscul Disord ; 31(12): 1266-1278, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34785121

RESUMO

Models are practical tools with which to establish the basic aspects of a diseases. They allow systematic research into the significance of mutations, of cellular and molecular pathomechanisms, of therapeutic options and of functions of diseases associated proteins. Thus, disease models are an integral part of the study of enigmatic proteins such as immunoglobulin mu-binding protein 2 (IGHMBP2). IGHMBP2 has been well defined as a helicase, however there is little known about its role in cellular processes. Notably, it is unclear why changes in such an abundant protein lead to specific neuronal disorders including spinal muscular atrophy with respiratory distress type 1 (SMARD1) and Charcot-Marie-Tooth type 2S (CMT2S). SMARD1 is caused by a loss of motor neurons in the spinal cord that results in muscle atrophy and is accompanied by rapid respiratory failure. In contrast, CMT2S manifests as a severe neuropathy, but typically without critical breathing problems. Here, we present the clinical manifestation of IGHMBP2 mutations, function of protein and models that may be used for the study of IGHMBP2-associated disorders. We highlight the strengths and weaknesses of specific models and discuss the orthologs of IGHMBP2 that are found in different systems with regard to their similarity to human IGHMBP2.


Assuntos
Doença de Charcot-Marie-Tooth , Proteínas de Ligação a DNA/fisiologia , Modelos Animais de Doenças , Células-Tronco Pluripotentes Induzidas , Atrofia Muscular Espinal , Síndrome do Desconforto Respiratório do Recém-Nascido , Saccharomyces cerevisiae , Fatores de Transcrição/fisiologia , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/fisiopatologia , Doença de Charcot-Marie-Tooth/terapia , Proteínas de Ligação a DNA/genética , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/fisiopatologia , Atrofia Muscular Espinal/terapia , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Síndrome do Desconforto Respiratório do Recém-Nascido/terapia , Fatores de Transcrição/genética
4.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830155

RESUMO

VPS13 proteins are evolutionarily conserved. Mutations in the four human genes (VPS13A-D) encoding VPS13A-D proteins are linked to developmental or neurodegenerative diseases. The relationship between the specific localization of individual VPS13 proteins, their molecular functions, and the pathology of these diseases is unknown. Here we used a yeast model to establish the determinants of Vps13's interaction with the membranes of Golgi apparatus. We analyzed the different phenotypes of the arf1-3 arf2Δ vps13∆ strain, with reduced activity of the Arf1 GTPase, the master regulator of Golgi function and entirely devoid of Vps13. Our analysis led us to propose that Vps13 and Arf1 proteins cooperate at the Golgi apparatus. We showed that Vps13 binds to the Arf1 GTPase through its C-terminal Pleckstrin homology (PH)-like domain. This domain also interacts with phosphoinositol 4,5-bisphosphate as it was bound to liposomes enriched with this lipid. The homologous domain of VPS13A exhibited the same behavior. Furthermore, a fusion of the PH-like domain of Vps13 to green fluorescent protein was localized to Golgi structures in an Arf1-dependent manner. These results suggest that the PH-like domains and Arf1 are determinants of the localization of VPS13 proteins to the Golgi apparatus in yeast and humans.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator 1 de Ribosilação do ADP/genética , Clatrina/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Mitocôndrias/genética , Mitocôndrias/metabolismo , Modelos Biológicos , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
5.
Int J Mol Sci ; 22(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477664

RESUMO

Charcot-Marie-Tooth disease (CMT) is a heritable neurodegenerative disease that displays great genetic heterogeneity. The genes and mutations that underlie this heterogeneity have been extensively characterized by molecular genetics. However, the molecular pathogenesis of the vast majority of CMT subtypes remains terra incognita. Any attempts to perform experimental therapy for CMT disease are limited by a lack of understanding of the pathogenesis at a molecular level. In this study, we aim to identify the molecular pathways that are disturbed by mutations in the gene encoding GDAP1 using both yeast and human cell, based models of CMT-GDAP1 disease. We found that some mutations in GDAP1 led to a reduced expression of the GDAP1 protein and resulted in a selective disruption of the Golgi apparatus. These structural alterations are accompanied by functional disturbances within the Golgi. We screened over 1500 drugs that are available on the market using our yeast-based CMT-GDAP1 model. Drugs were identified that had both positive and negative effects on cell phenotypes. To the best of our knowledge, this study is the first report of the Golgi apparatus playing a role in the pathology of CMT disorders. The drugs we identified, using our yeast-based CMT-GDAP1 model, may be further used in translational research.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Complexo de Golgi/genética , Proteínas do Tecido Nervoso/genética , Rede trans-Golgi/genética , Doença de Charcot-Marie-Tooth/patologia , Heterogeneidade Genética , Complexo de Golgi/patologia , Células HeLa , Humanos , Modelos Genéticos , Mutação/genética , Linhagem , Relação Estrutura-Atividade , Leveduras/genética
6.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560077

RESUMO

Charcot-Marie-Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps. In this review, we discuss the advantages and disadvantages of yeast as a model system in which to study CMT diseases. We show how this single-cell organism may be used to discriminate between pathogenic variants, to uncover the mechanism of pathogenesis, and to discover new therapies for CMT disease.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Variação Genética , Saccharomyces cerevisiae/genética , Animais , Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Medicina de Precisão , Saccharomyces cerevisiae/crescimento & desenvolvimento
7.
Genes (Basel) ; 11(3)2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183277

RESUMO

The question of whether a newly identified sequence variant is truly a causative mutation is a central problem of modern clinical genetics. In the current era of massive sequencing, there is an urgent need to develop new tools for assessing the pathogenic effect of new sequence variants. In Charcot-Marie-Tooth disorders (CMT) with their extreme genetic heterogeneity and relatively homogenous clinical presentation, addressing the pathogenic effect of rare sequence variants within 80 CMT genes is extremely challenging. The presence of multiple rare sequence variants within a single CMT-affected patient makes selection for the strongest one, the truly causative mutation, a challenging issue. In the present study we propose a new yeast-based model to evaluate the pathogenic effect of rare sequence variants found within the one of the CMT-associated genes, GDAP1. In our approach, the wild-type and pathogenic variants of human GDAP1 gene were expressed in yeast. Then, a growth rate and mitochondrial morphology and function of GDAP1-expressing strains were studied. Also, the mutant GDAP1 proteins localization and functionality were assessed in yeast. We have shown, that GDAP1 was not only stably expressed but also functional in yeast cell, as it influenced morphology and function of mitochondria and altered the growth of a mutant yeast strain. What is more, the various GDAP1 pathogenic sequence variants caused the specific for them effect in the tests we performed. Thus, the proposed model is suitable for validating the pathogenic effect of known GDAP1 mutations and may be used for testing of unknown sequence variants found in CMT patients.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Heterogeneidade Genética , Mitocôndrias/genética , Proteínas do Tecido Nervoso/genética , Doença de Charcot-Marie-Tooth/patologia , Regulação da Expressão Gênica/genética , Humanos , Mutação/genética , Saccharomyces cerevisiae/genética
8.
Dis Model Mech ; 12(1)2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30635263

RESUMO

Chorea-acanthocytosis (ChAc) is a rare neurodegenerative disease associated with mutations in the human VPS13A gene. The mechanism of ChAc pathogenesis is unclear. A simple yeast model was used to investigate the function of the single yeast VSP13 orthologue, Vps13. Vps13, like human VPS13A, is involved in vesicular protein transport, actin cytoskeleton organisation and phospholipid metabolism. A newly identified phenotype of the vps13Δ mutant, sodium dodecyl sulphate (SDS) hypersensitivity, was used to screen a yeast genomic library for multicopy suppressors. A fragment of the MYO3 gene, encoding Myo3-N (the N-terminal part of myosin, a protein involved in the actin cytoskeleton and in endocytosis), was isolated. Myo3-N protein contains a motor head domain and a linker. The linker contains IQ motifs that mediate the binding of calmodulin, a negative regulator of myosin function. Amino acid substitutions that disrupt the interaction of Myo3-N with calmodulin resulted in the loss of vps13Δ suppression. Production of Myo3-N downregulated the activity of calcineurin, a protein phosphatase regulated by calmodulin, and alleviated some defects in early endocytosis events. Importantly, ethylene glycol tetraacetic acid (EGTA), which sequesters calcium and thus downregulates calmodulin and calcineurin, was a potent suppressor of vps13Δ. We propose that Myo3-N acts by sequestering calmodulin, downregulating calcineurin and increasing activity of Myo3, which is involved in endocytosis and, together with Osh2/3 proteins, functions in endoplasmic reticulum-plasma membrane contact sites. These results show that defects associated with vps13Δ could be overcome, and point to a functional connection between Vps13 and calcium signalling as a possible target for chemical intervention in ChAc. Yeast ChAc models may uncover the underlying pathological mechanisms, and may also serve as a platform for drug testing.This article has an associated First Person interview with the first author of the paper.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Calmodulina/metabolismo , Modelos Biológicos , Miosinas/metabolismo , Neuroacantocitose/tratamento farmacológico , Neuroacantocitose/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Alelos , Substituição de Aminoácidos , Calcineurina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Canavanina/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Endocitose/efeitos dos fármacos , Genes Supressores , Mutação/genética , Domínios Proteicos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Dodecilsulfato de Sódio , Transcrição Gênica/efeitos dos fármacos , Vacúolos/metabolismo
9.
Acta Neurobiol Exp (Wars) ; 78(1): 1-13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694336

RESUMO

In 2002 a series of mutations in the GDAP1 gene were reported in patients suffering from Charcot­Marie­Tooth disease manifesting as early-onset, progressive distal­muscle wasting and weakness. The molecular etiology of Charcot­Marie­Tooth ­GDAP1 disease has been elucidated but its pathogenesis remains unclear, especially given the seemingly contradictory function of the GDAP1 protein. Expression of GDAP1 is observed almost exclusively in neuronal cells, however, the GDAP1 protein is present in mitochondria, where it plays a role in fission, a ubiquitous process occurring in all cells. While GDAP1 contains two glutathione S­transferase (GST) domains, its GST activity is in fact very limited. Additionally, despite GDAP1 affecting mitochondrial functionality, and hence being of great importance to cellular function, the GDAP1­associated Charcot-Marie-Tooth disease is mainly characterized by axonal degeneration. Finally, mutations in the GDAP1 gene may be inherited in a recessive or dominant manner. Given the way such varied observations are hard to reconcile with one another, the investigation of GDAP1 is at one and the same time a difficult but also challenging endeavour. The purpose of this review is to summarize the current knowledge on the GDAP1 protein and its function in the cell. A further part is the characterization of GDAP1­associated Charcot-Marie-Tooth disease, its symptoms and course, as well as an outlining of the possible mechanisms underpinning the disorder.


Assuntos
Doença de Charcot-Marie-Tooth/etiologia , Doença de Charcot-Marie-Tooth/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Predisposição Genética para Doença/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo
10.
Postepy Biochem ; 64(4): 288-299, 2018 Dec 29.
Artigo em Polonês | MEDLINE | ID: mdl-30656913

RESUMO

Hereditary motor and sensory neuropathies (HMSN) also called as Charcot-Marie-Tooth disorders (CMT) are extremely heterogeneous group of disorders of peripheral nervous system. Over 80 genes have been reported in different types of CMT. In all CMT affected patients the main symptoms are slowly progressive wasting of the distal muscles of the lower and upper limbs. To date no efficient therapeutic approach basing upon molecular pathology of CMT has been proposed. This review presents the current state of knowledge concerning clinical, molecular pathogenesis and experimental therapy aspects in CMT disorders. Additionally the possibilities resulting from the use of the yeast model to the identification of new therapeutic substances as well as of neurotoxins are also discussed.


Assuntos
Doença de Charcot-Marie-Tooth/terapia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Humanos , Modelos Biológicos
11.
Traffic ; 18(11): 711-719, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28846184

RESUMO

Human Vps13 proteins are associated with several diseases, including the neurodegenerative disorder Chorea-acanthocytosis (ChAc), yet the biology of these proteins is still poorly understood. Studies in Saccharomyces cerevisiae, Dictyostelium discoideum, Tetrahymena thermophila and Drosophila melanogaster point to the involvement of Vps13 in cytoskeleton organization, vesicular trafficking, autophagy, phagocytosis, endocytosis, proteostasis, sporulation and mitochondrial functioning. Recent findings show that yeast Vps13 binds to phosphatidylinositol lipids via 4 different regions and functions at membrane contact sites, enlarging the list of Vps13 functions. This review describes the great potential of simple eukaryotes to decipher disease mechanisms in higher organisms and highlights novel insights into the pathological role of Vps13 towards ChAc.


Assuntos
Neuroacantocitose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Dictyostelium/metabolismo , Drosophila melanogaster/metabolismo , Humanos , Mutação , Neuroacantocitose/genética , Neuroacantocitose/patologia , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade da Espécie , Proteínas de Transporte Vesicular/genética
12.
Hum Mol Genet ; 26(8): 1497-1510, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28334785

RESUMO

The rare human disorder chorea-acanthocytosis (ChAc) is caused by mutations in hVPS13A gene. The hVps13A protein interacts with actin and regulates the level of phosphatidylinositol 4-phosphate (PI4P) in the membranes of neuronal cells. Yeast Vps13 is involved in vacuolar protein transport and, like hVps13A, participates in PI4P metabolism. Vps13 proteins are conserved in eukaryotes, but their molecular function remains unknown. One of the mutations found in ChAc patients causes amino acids substitution I2771R which affects the localization of hVps13A in skeletal muscles. To dissect the mechanism of pathogenesis of I2771R, we created and analyzed a yeast strain carrying the equivalent mutation. Here we show that in yeast, substitution I2749R causes dysfunction of Vps13 protein in endocytosis and vacuolar transport, although the level of the protein is not affected, suggesting loss of function. We also show that Vps13, like hVps13A, influences actin cytoskeleton organization and binds actin in immunoprecipitation experiments. Vps13-I2749R binds actin, but does not function in the actin cytoskeleton organization. Moreover, we show that Vps13 binds phospholipids, especially phosphatidylinositol 3-phosphate (PI3P), via its SHR_BD and APT1 domains. Substitution I2749R attenuates this ability. Finally, the localization of Vps13-GFP is altered when cellular levels of PI3P are decreased indicating its trafficking within the endosomal membrane system. These results suggest that PI3P regulates the functioning of Vps13, both in protein trafficking and actin cytoskeleton organization. Attenuation of PI3P-binding ability in the mutant hVps13A protein may be one of the reasons for its mislocalization and disrupted function in cells of patients suffering from ChAc.


Assuntos
Substituição de Aminoácidos/genética , Neuroacantocitose/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Citoesqueleto de Actina/genética , Transporte Biológico/genética , Endossomos/genética , Humanos , Mutação , Neuroacantocitose/patologia , Fosfatos de Fosfatidilinositol/metabolismo , Saccharomyces cerevisiae/genética
13.
Int J Biochem Cell Biol ; 79: 494-504, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27498190

RESUMO

Human Nedd4 ubiquitin ligase, or its variants, inhibit yeast cell growth by disturbing the actin cytoskeleton organization and dynamics, and lead to an increase in levels of ubiquitinated proteins. In a screen for multicopy suppressors which rescue growth of yeast cells producing Nedd4 ligase with an inactive WW4 domain (Nedd4w4), we identified a fragment of ATG2 gene encoding part of the Atg2 core autophagy protein. Expression of the Atg2-C1 fragment (aa 1074-1447) improved growth, actin cytoskeleton organization, but did not significantly change the levels of ubiquitinated proteins in these cells. The GFP-Atg2-C1 protein in Nedd4w4-producing cells primarily localized to a single defined structure adjacent to the vacuole, surrounded by an actin filament ring, containing Hsp42 and Hsp104 chaperones. This localization was not affected in several atg deletion mutants, suggesting that it might be distinct from the phagophore assembly site (PAS). However, deletion of ATG18 encoding a phosphatidylinositol-3-phosphate (PI3P)-binding protein affected the morphology of the GFP-Atg2-C1 structure while deletion of ATG14 encoding a subunit of PI3 kinase suppressed toxicity of Nedd4w4 independently of GFP-Atg2-C1. Further analysis of the Atg2-C1 revealed that it contains an APT1 domain of previously uncharacterized function. Most importantly, we showed that this domain is able to bind phosphatidylinositol phosphates, especially PI3P, which is abundant in the PAS and endosomes. Together our results suggest that human Nedd4 ubiquitinates proteins in yeast and causes proteotoxic stress and, with some Atg proteins, leads to formation of a perivacuolar structure, which may be involved in sequestration, aggregation or degradation of proteins.


Assuntos
Estresse Oxidativo , Fosfatos de Fosfatidilinositol/metabolismo , Proteólise , Citoplasma/metabolismo , Humanos , Domínios Proteicos , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
14.
Eur J Cell Biol ; 94(12): 576-88, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26548973

RESUMO

Rsp5 ubiquitin ligase belongs to the Nedd4 family of proteins, which affect a wide variety of processes in the cell. Here we document that Rsp5 shows several phosphorylated variants of different mobility and the migration of the phosphorylated forms of Rsp5 was faster for the tpk1Δ tpk3Δ mutant devoid of two alternative catalytic subunits of protein kinase A (PKA), indicating that PKA possibly phosphorylates Rsp5 in vivo. We demonstrated by immunoprecipitation and Western blot analysis of GFP-HA-Rsp5 protein using the anti-phospho PKA substrate antibody that Rsp5 is phosphorylated in PKA sites. Rsp5 contains the sequence 758-RRFTIE-763 with consensus RRXS/T in the catalytic HECT domain and four other sites with consensus RXXS/T, which might be phosphorylated by PKA. The strain bearing the T761D substitution in Rsp5 which mimics phosphorylation grew more slowly at 28°C and did not grow at 37°C, and showed defects in pre-tRNA processing and protein sorting. The rsp5-T761D strain also demonstrated a reduced ability to form colonies, an increase in the level of reactive oxygen species (ROS) and hypersensitivity to ROS-generating agents. These results indicate that PKA may downregulate many functions of Rsp5, possibly affecting its activity. Rsp5 is found in the cytoplasm, nucleus, multivesicular body and cortical patches. The rsp5-T761D mutation led to a strongly increased cortical localization while rsp5-T761A caused mutant Rsp5 to locate more efficiently in internal spots. Rsp5-T761A protein was phosphorylated less efficiently in PKA sites under specific growth conditions. Our data suggests that Rsp5 may be phosphorylated by PKA at position T761 and that this regulation is important for its localization and function.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Mimetismo Molecular , Dados de Sequência Molecular , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Treonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA