Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
2.
Genet Sel Evol ; 56(1): 12, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347496

RESUMO

BACKGROUND: Intramuscular fat (IMF) content and its fatty acid (FA) composition are typically controlled by several genes, each with a small effect. In the current study, to pinpoint candidate genes and putative regulators involved in FA composition, we performed a multivariate integrative analysis between intramuscular FA and transcriptome profiles of porcine longissimus dorsi (LD) muscle. We also carried out a combination of network, regulatory impact factor (RIF), in silico prediction of putative target genes, and functional analyses to better support the biological relevance of our findings. RESULTS: For this purpose, we used LD RNA-Seq and intramuscular FA composition profiles of 129 Iberian × Duroc backcrossed pigs. We identified 378 correlated variables (13 FA and 365 genes), including six FA (C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, C18:0, and C16:1n-7) that were among the most interconnected variables in the predicted network. The detected FA-correlated genes include genes involved in lipid and/or carbohydrate metabolism or in regulation of IMF deposition (e.g., ADIPOQ, CHUK, CYCS, CYP4B1, DLD, ELOVL6, FBP1, G0S2, GCLC, HMGCR, IDH3A, LEP, LGALS12, LPIN1, PLIN1, PNPLA8, PPP1R1B, SDR16C5, SFRP5, SOD3, SNW1, and TFRC), meat quality (GALNT15, GOT1, MDH1, NEU3, PDHA1, SDHD, and UNC93A), and transport (e.g., EXOC7 and SLC44A2). Functional analysis highlighted 54 over-represented gene ontology terms, including well-known biological processes and pathways that regulate lipid and carbohydrate metabolism. RIF analysis suggested a pivotal role for six transcription factors (CARHSP1, LBX1, MAFA, PAX7, SIX5, and TADA2A) as putative regulators of gene expression and intramuscular FA composition. Based on in silico prediction, we identified putative target genes for these six regulators. Among these, TADA2A and CARHSP1 had extreme RIF scores and present novel regulators in pigs. In addition, the expression of TADA2A correlated (either positively or negatively) with C20:4n-6, C18:2n-6, C20:3n-6, C18:1n-9, and that of CARHSP1 correlated (positively) with the C16:1n-7 lipokine. We also found that these two transcription factors share target genes that are involved in lipid metabolism (e.g., GOT1, PLIN1, and TFRC). CONCLUSIONS: This integrative analysis of muscle transcriptome and intramuscular FA profile revealed valuable information about key candidate genes and potential regulators for FA and lipid metabolism in pigs, among which some transcription factors are proposed to control gene expression and modulate FA composition differences.


Assuntos
Ácidos Graxos , Músculo Esquelético , Suínos/genética , Animais , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Genes Reguladores , Transcriptoma
3.
mSystems ; 9(1): e0104923, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38095419

RESUMO

The gut microbiota is a key player in the host metabolism. Some bacteria are able to ferment non-digestible compounds and produce short-chain fatty acids that the host can later transform and accumulate in tissue. In this study, we aimed to better understand the relationships between the microorganisms and the short-chain fatty acid composition of the rectal content, including the possible linkage with the fatty acid composition in backfat and muscle of the pig. We studied a Duroc × Iberian crossbred population, and we found significant correlations between different bacterial and archaeal genera and the fatty acid profile. The abundance of n-butyric acid in the rectal content was positively associated with Prevotella spp. and negatively associated with Akkermansia spp., while conversely, the abundance of acetic acid was negatively and positively associated with the levels of Prevotella spp. and Akkermansia spp., respectively. The most abundant genus, Rikenellaceae RC9 gut group, had a positive correlation with palmitic acid in muscle and negative correlations with stearic acid in backfat and oleic acid in muscle. These results suggest the possible role of Prevotella spp. and Akkermansia spp. as biomarkers for acetic and n-butyric acids, and the relationship of Rikenellaceae RC9 gut group with the lipid metabolism, building up the potential, although indirect, role of the microbiota in the modification of the backfat and muscle fatty acid composition of the host.IMPORTANCEThe vital role of the gut microbiota on its host metabolism makes it essential to know how its modulation is mirrored on the fatty acid composition of the host. Our findings suggest Prevotella spp. and Akkermansia spp. as potential biomarkers for the levels of beneficial short-chain fatty acids and the possible influence of Rikenellaceae RC9 gut group in the backfat and muscle fatty acid composition of the pig.


Assuntos
Microbioma Gastrointestinal , Microbiota , Suínos , Animais , Ácidos Graxos , Ácidos Graxos Voláteis/metabolismo , Bactérias , Ácido Butírico , Akkermansia/metabolismo , Bacteroidetes/metabolismo , Biomarcadores
4.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37561402

RESUMO

Polyunsaturated fatty acids (PUFA), such as omega-6 (n-6) and omega-3 (n-3), play a vital role in nutrient metabolism, inflammatory response, and gene regulation. microRNAs (miRNA), which can potentially degrade targeted messenger RNAs (mRNA) and/or inhibit their translation, might play a relevant role in PUFA-related changes in gene expression. Although differential expression analyses can provide a comprehensive picture of gene expression variation, they are unable to disentangle when in the mRNA life cycle the regulation of expression is taking place, including any putative functional miRNA-driven repression. To capture this, we used an exon-intron split analysis (EISA) approach to account for posttranscriptional changes in response to extreme values of n-6/n-3 PUFA ratio. Longissimus dorsi muscle samples of male and female piglets from sows fed with n-6/n-3 PUFA ratio of 13:1 (SOY) or 4:1 (LIN), were analyzed in a bidirectional contrast (LIN vs. SOY, SOY vs. LIN). Our results allowed the identification of genes showing strong posttranscriptional downregulation signals putatively targeted by significantly upregulated miRNA. Moreover, we identified genes primarily involved in the regulation of lipid-related metabolism and immune response, which may be associated with the pro- and anti-inflammatory functions of the n-6 and n-3 PUFA, respectively. EISA allowed us to uncover regulatory networks complementing canonical differential expression analyses, thus providing a more comprehensive view of muscle metabolic changes in response to PUFA concentration.


The relationship between dietary lipids, such as omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and gene expression regulation was explored in piglet muscle. While these PUFA can influence nutrient metabolism and inflammatory response, small regulatory molecules called microRNAs (miRNA) can also influence the activity of genes. In this experiment, we used a computational approach dubbed exon­intron split analysis (EISA) to fully understand the role of miRNA in this context and how the genes and miRNA respond to changes in PUFA levels. Our findings demonstrated that some genes involved in lipid metabolism and immune response were affected by different PUFA concentrations and that EISA provides a more comprehensive view of how genes are regulated throughout their life cycle.


Assuntos
Ácidos Graxos Ômega-3 , MicroRNAs , Animais , Feminino , Suínos/genética , Masculino , Íntrons , Ácidos Graxos Insaturados , Ácidos Graxos Ômega-3/farmacologia , Dieta/veterinária , MicroRNAs/genética , Éxons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
J Vet Intern Med ; 37(5): 1738-1749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486176

RESUMO

BACKGROUND: Differentiation of gastrointestinal cancer (GIC) from chronic inflammatory enteropathies (CIE) in cats can be challenging and often requires extensive diagnostic testing. MicroRNAs (miRNAs) have promise as non-invasive biomarkers in serum and feces for diagnosis of GIC. HYPOTHESIS/OBJECTIVES: Cats with GIC will have serum and fecal miRNA profiles that differ significantly from healthy cats and cats with CIE. Identify serum and fecal miRNAs with diagnostic potential for differentiation between cats with GIC and CIE as compared to healthy cats. ANIMALS: Ten healthy cats, 9 cats with CIE, and 10 cats with GIC; all client-owned. METHODS: Cats were recruited for an international multicenter observational prospective case-control study. Serum and feces were screened using small RNA sequencing for miRNAs that differed in abundance between cats with GIC and CIE, and healthy cats. Diagnostic biomarker potential of relevant miRNAs from small RNA sequencing and the literature was confirmed using reverse transcription quantitative real-time PCR (RT-qPCR). RESULTS: Serum miR-223-3p was found to distinguish between cats with GIC and CIE with an area under the curve (AUC) of 0.9 (95% confidence interval [CI], 0.760-1.0), sensitivity of 90% (95% CI, 59.6-99.5%), and specificity of 77.8% (95% CI, 45.3-96.1%). Serum miR-223-3p likewise showed promise in differentiating a subgroup of cats with small cell lymphoma (SCL) from those with CIE. No fecal miRNAs could distinguish between cats with GIC and CIE. CONCLUSION AND CLINICAL IMPORTANCE: Serum miR-223-3p potentially may serve as a noninvasive diagnostic biomarker of GIC in cats, in addition to providing a much needed tool for the differentiation of CIE and SCL.


Assuntos
Doenças do Gato , Neoplasias Gastrointestinais , MicroRNAs , Gatos , Animais , Estudos de Casos e Controles , Biomarcadores , Neoplasias Gastrointestinais/veterinária , Fezes , Doenças do Gato/diagnóstico
6.
PeerJ ; 11: e15520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361042

RESUMO

The mammalian spermatozoon has a unique chromatin structure in which the majority of histones are replaced by protamines during spermatogenesis and a small fraction of nucleosomes are retained at specific locations of the genome. The sperm's chromatin structure remains unresolved in most animal species, including the pig. However, mapping the genomic locations of retained nucleosomes in sperm could help understanding the molecular basis of both sperm development and function as well as embryo development. This information could then be useful to identify molecular markers for sperm quality and fertility traits. Here, micrococcal nuclease digestion coupled with high throughput sequencing was performed on pig sperm to map the genomic location of mono- and sub-nucleosomal chromatin fractions in relation to a set of diverse functional elements of the genome, some of which were related to semen quality and early embryogenesis. In particular, the investigated elements were promoters, the different sections of the gene body, coding and non-coding RNAs present in the pig sperm, potential transcription factor binding sites, genomic regions associated to semen quality traits and repeat elements. The analysis yielded 25,293 and 4,239 peaks in the mono- and sub-nucleosomal fractions, covering 0.3% and 0.02% of the porcine genome, respectively. A cross-species comparison revealed positional conservation of the nucleosome retention in sperm between the pig data and a human dataset that found nucleosome enrichment in genomic regions of importance in development. Both gene ontology analysis of the genes mapping nearby the mono-nucleosomal peaks and the identification of putative transcription factor binding motifs within the mono- and the sub- nucleosomal peaks showed enrichment for processes related to sperm function and embryo development. There was significant motif enrichment for Znf263, which in humans was suggested to be a key regulator of genes with paternal preferential expression during early embryogenesis. Moreover, enriched positional intersection was found in the genome between the mono-nucleosomal peaks and both the RNAs present in pig sperm and the RNAs related to sperm quality. There was no co-location between GWAS hits for semen quality in swine and the nucleosomal sites. Finally, the data evidenced depletion of mono-nucleosomes in long interspersed nuclear elements and enrichment of sub-nucleosomes in short interspersed repeat elements.These results suggest that retained nucleosomes in sperm could both mark regulatory elements or genes expressed during spermatogenesis linked to semen quality and fertility and act as transcriptional guides during early embryogenesis. The results of this study support the undertaking of ambitious research using a larger number of samples to robustly assess the positional relationship between histone retention in sperm and the reproductive ability of boars.


Assuntos
Histonas , Nucleossomos , Masculino , Animais , Suínos/genética , Humanos , Histonas/genética , Nucleossomos/genética , Nuclease do Micrococo/genética , Análise do Sêmen , Sêmen/metabolismo , Cromatina/genética , Espermatozoides/metabolismo , Fatores de Transcrição/genética , Genômica , Desenvolvimento Embrionário/genética , Mamíferos/genética
7.
PLoS One ; 18(5): e0283231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37141193

RESUMO

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are essential fatty acids with antagonistic inflammatory functions that play vital roles in metabolic health and immune response. Current commercial swine diets tend to over-supplement with n-6 PUFAs, which may increase the likelihood of developing inflammatory diseases and affect the overall well-being of the animals. However, it is still poorly understood how n-6/n-3 PUFA ratios affect the porcine transcriptome expression and how messenger RNAs (mRNAs) and microRNAs (miRNAs) might regulate biological processes related to PUFA metabolism. On account of this, we selected a total of 20 Iberian × Duroc crossbred pigs with extreme values for n-6/n-3 FA ratio (10 high vs 10 low), and longissimus dorsi muscle samples were used to identify differentially expressed mRNAs and miRNAs. The observed differentially expressed mRNAs were associated to biological pathways related to muscle growth and immunomodulation, while the differentially expressed microRNAs (ssc-miR-30a-3p, ssc-miR-30e-3p, ssc-miR-15b and ssc-miR-7142-3p) were correlated to adipogenesis and immunity. Relevant miRNA-to-mRNA regulatory networks were also predicted (i.e., mir15b to ARRDC3; mir-7142-3p to METTL21C), and linked to lipolysis, obesity, myogenesis, and protein degradation. The n-6/n-3 PUFA ratio differences in pig skeletal muscle revealed genes, miRNAs and enriched pathways involved in lipid metabolism, cell proliferation and inflammation.


Assuntos
Ácidos Graxos Ômega-3 , MicroRNAs , Suínos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Músculo Esquelético/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Perfilação da Expressão Gênica
8.
Sci Rep ; 13(1): 535, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631502

RESUMO

Fatty acids (FAs) play an essential role as mediators of cell signaling and signal transduction, affecting metabolic homeostasis and determining meat quality in pigs. However, FAs are transformed by the action of several genes, such as those encoding desaturases and elongases of FAs in lipogenic tissues. The aim of the current work was to identify candidate genes, biological processes, and pathways involved in the modulation of intramuscular FA profile from longissimus dorsi muscle. FA profile by gas chromatography of methyl esters and gene expression by RNA-Seq were determined in 129 Iberian × Duroc backcrossed pigs. An association analysis between the muscle transcriptome and its FA profile was performed, followed by a concordance and functional analysis. Overall, a list of well-known (e.g., PLIN1, LEP, ELOVL6, SC5D, NCOA2, ACSL1, MDH1, LPL, LGALS12, TFRC, GOT1, and FBP1) and novel (e.g., TRARG1, TANK, ENSSSCG00000011196, and ENSSSCG00000038429) candidate genes was identified, either in association with specific or several FA traits. Likewise, several of these genes belong to biological processes and pathways linked to energy, lipid, and carbohydrate metabolism, which seem determinants in the modulation of FA compositions. This study can contribute to elucidate the complex relationship between gene expression and FA profile in pig muscle.


Assuntos
Ácidos Graxos , Músculo Esquelético , Suínos , Animais , Músculo Esquelético/metabolismo , RNA-Seq , Ácidos Graxos/metabolismo , Transcriptoma , Fenótipo
9.
J Vet Intern Med ; 36(6): 1989-2001, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36120988

RESUMO

BACKGROUND: Reliable biomarkers to differentiate gastrointestinal cancer (GIC) from chronic inflammatory enteropathy (CIE) in dogs are needed. Fecal and serum microRNAs (miRNAs) have been proposed as diagnostic and prognostic markers of GI disease in humans and dogs. HYPOTHESIS/OBJECTIVES: Dogs with GIC have fecal and serum miRNA profiles that differ from those of dogs with CIE. AIMS: (a) identify miRNAs that differentiate GIC from CIE, (b) use high-throughput reverse transcription quantitative real-time PCR (RT-qPCR) to establish fecal and serum miRNA panels to distinguish GIC from CIE in dogs. ANIMALS: Twenty-four dogs with GIC, 10 dogs with CIE, and 10 healthy dogs, all client-owned. METHODS: An international multicenter observational prospective case-control study. Small RNA sequencing was used to identify fecal and serum miRNAs, and RT-qPCR was used to establish fecal and serum miRNA panels with the potential to distinguish GIC from CIE. RESULTS: The best diagnostic performance for distinguishing GIC from CIE was fecal miR-451 (AUC: 0.955, sensitivity: 86.4%, specificity: 100%), miR-223 (AUC: 0.918, sensitivity: 90.9%, specificity: 80%), and miR-27a (AUC: 0.868, sensitivity: 81.8%, specificity: 90%) and serum miR-20b (AUC: 0.905, sensitivity: 90.5%, specificity: 90%), miR-148a-3p (AUC: 0.924, sensitivity: 85.7%, specificity: 90%), and miR-652 (AUC: 0.943, sensitivity: 90.5%, specificity: 90%). Slightly improved diagnostic performance was achieved when combining fecal miR-451 and miR-223 (AUC: 0.973, sensitivity: 95.5%, specificity: 90%). CONCLUSIONS AND CLINICAL IMPORTANCE: When used as part of a diagnostic RT-qPCR panel, the abovementioned miRNAs have the potential to function as noninvasive biomarkers for the differentiation of GIC and CIE in dogs.


Assuntos
Doenças do Cão , Neoplasias Gastrointestinais , MicroRNAs , Animais , Cães , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Doenças do Cão/diagnóstico , Doenças do Cão/genética , Neoplasias Gastrointestinais/veterinária , Perfilação da Expressão Gênica/veterinária , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária
10.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566276

RESUMO

Elevated omega-6 (n-6) and omega-3 (n-3) polyunsaturated fatty acids (PUFAs) ratios in swine diets can potentially impose a higher risk of inflammatory and metabolic diseases in swine. A low ratio between the two omega PUFAs has beneficial effects on sows' and piglets' production performance and immunity status. At present, there are few studies on how sow nutrition directly affects the protein and fat deposition in suckling piglets. Two groups of sows were fed diets with high or low n-6/n-3 polyunsaturated ratios of 13:1 (SOY) and 4:1 (LIN), respectively, during gestation and lactation. Longissimus dorsi muscle and adipose tissue from newborn piglets, nourished only with sow's milk, were subjected to fatty acid profiling by gas chromatography-mass spectrometry (GC-MS) and to proteomics assays based on nano-liquid chromatography coupled to high-resolution tandem mass spectrometry (nLC-HRMS). Fatty acid profiles on both muscle and adipose tissues resembled the magnitude of the differences between fatty acid across diets. Proteomic analysis revealed overabundance of 4 muscle and 11 adipose tissue proteins in SOY compared to LIN in both piglet tissues. The detected overabundance of haptoglobin, an acute-phase protein, and the stimulation of protein-coding genes and proteins related to the innate immune response and acute inflammatory response could be associated with the pro-inflammatory role of n-6 PUFAs.


Assuntos
Ácidos Graxos Ômega-3 , Proteômica , Tecido Adiposo/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos/análise , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/análise , Feminino , Lactação , Leite/química , Músculos/química , Gravidez , Suínos
11.
Evol Appl ; 14(11): 2618-2634, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34815743

RESUMO

Iberian wild goats (Capra pyrenaica, also known as Iberian ibex, Spanish ibex, and Spanish wild goat) underwent strong genetic bottlenecks during the 19th and 20th centuries due to overhunting and habitat destruction. From the 1970s to 1990s, augmentation translocations were frequently carried out to restock Iberian wild goat populations (very often with hunting purposes), but they were not systematically planned or recorded. On the other hand, recent data suggest the occurrence of hybridization events between Iberian wild goats and domestic goats (Capra hircus). Augmentation translocations and interspecific hybridization might have contributed to increase the diversity of Iberian wild goats. With the aim of investigating this issue, we have genotyped 118 Iberian wild goats from Tortosa-Beceite, Sierra Nevada, Muela de Cortes, Gredos, Batuecas, and Ordesa and Monte Perdido by using the Goat SNP50 BeadChip (Illumina). The analysis of genotypic data indicated that Iberian wild goat populations are strongly differentiated and display low diversity. Only three Iberian wild goats out from 118 show genomic signatures of mixed ancestry, a result consistent with a scenario in which past augmentation translocations have had a limited impact on the diversity of Iberian wild goats. Besides, we have detected eight Iberian wild goats from Tortosa-Beceite with signs of domestic goat introgression. Although rare, hybridization with domestic goats could become a potential threat to the genetic integrity of Iberian wild goats; hence, measures should be taken to avoid the presence of uncontrolled herds of domestic or feral goats in mountainous areas inhabited by this iconic wild ungulate.

12.
Front Vet Sci ; 8: 668158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350225

RESUMO

RNA-Seq data from human semen suggests that the study of the sperm transcriptome requires the previous elimination from the ejaculates of somatic cells carrying a larger load of RNA. Semen purification is also carried to study the sperm transcriptome in other species including swine and it is often done by density gradient centrifugation to obtain viable spermatozoa from fresh ejaculates or artificial insemination doses, thereby limiting the throughput and remoteness of the samples that can be processed in one study. The aim of this work was to evaluate the impact of purification with density gradient centrifugation by BoviPureTM on porcine sperm. Four boar ejaculates were purified with BoviPureTM and their transcriptome sequenced by RNA-Seq was compared with the RNA-Seq profiles of their paired non-purified sample. Seven thousand five hundred and nineteen protein coding genes were identified. Correlation, cluster, and principal component analysis indicated high-although not complete-similarity between the purified and the paired non-purified ejaculates. 372 genes displayed differentially abundant RNA levels between treatments. Most of these genes had lower abundances after purification and were mostly related to translation, transcription and metabolic processes. We detected a significant change in the proportion of genes of epididymal origin within the differentially abundant genes (1.3%) when compared with the catalog of unaltered genes (0.2%). In contrast, the proportion of testis-specific genes was higher in the group of unaltered genes (4%) when compared to the list of differentially abundant genes (0%). No proportion differences were identified for prostate, white blood, lymph node, tonsil, duodenum, skeletal muscle, liver, and mammary gland. Altogether, these results suggest that the purification impacts on the RNA levels of a small number of genes which are most likely caused by the removal of epididymal epithelial cells but also premature germinal cells, immature or abnormal spermatozoa or seminal exosomes with a distinct load of RNAs.

13.
PLoS One ; 16(1): e0245858, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33497399

RESUMO

mir-33a and mir-33b are co-transcribed with the SREBF2 and SREBF1 transcription factors, respectively. The main role of SREBF1 is the regulation of genes involved in fatty acid metabolism, while SREBF2 regulates genes participating in cholesterol biosynthesis and uptake. Our objective was to study the expression of both miR-33a and miR-33b, together with their host SREBF genes, in liver, adipose tissue and muscle to better understand the role of miR-33a/b in the lipid metabolism of pigs. In our study, the expression of miR-33a, miR-33b and SREBF2 in liver, adipose tissue, and muscle was studied in 42 BC1_LD (25% Iberian x 75% Landrace backcross) pigs by RT-qPCR. In addition, the expression of in-silico predicted target genes and fatty acid composition traits were correlated with the miR-33a/b expression. We observed different tissue expression patterns for both miRNAs. In adipose tissue and muscle a high correlation between miR-33a and miR-33b expression was found, whereas a lower correlation was observed in liver. The expression analysis of in-silico predicted target-lipid related genes showed negative correlations between miR-33b and CPT1A expression in liver. Conversely, positive correlations between miR-33a and PPARGC1A and USF1 gene expression in liver were observed. Lastly, positive and negative correlations between miR-33a/b expression and saturated fatty acid (SFA) and polyunsaturated fatty acid (PUFA) content, respectively, were identified. Overall, our results suggested that both miRNAs are differentially regulated and have distinct functions in liver, in contrast to muscle and adipose tissue. Furthermore, the correlations between miR-33a/b expression both with the expression of in-silico predicted target-lipid related genes and with fatty acid composition, opens new avenues to explore the role of miR33a/b in the regulation of lipid metabolism.


Assuntos
Tecido Adiposo/metabolismo , Ácidos Graxos/metabolismo , Fígado/metabolismo , MicroRNAs/genética , Músculo Esquelético/metabolismo , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , MicroRNAs/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Suínos , Fatores Estimuladores Upstream/genética , Fatores Estimuladores Upstream/metabolismo
14.
Genet Sel Evol ; 52(1): 72, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33292187

RESUMO

BACKGROUND: Genetic pressure in animal breeding is sparking the interest of breeders for selecting elite boars with higher sperm quality to optimize ejaculate doses and fertility rates. However, the molecular basis of sperm quality is not yet fully understood. Our aim was to identify candidate genes, pathways and DNA variants associated to sperm quality in swine by analysing 25 sperm-related phenotypes and integrating genome-wide association studies (GWAS) and RNA-seq under a systems biology framework. RESULTS: By GWAS, we identified 12 quantitative trait loci (QTL) associated to the percentage of head and neck abnormalities, abnormal acrosomes and motile spermatozoa. Candidate genes included CHD2, KATNAL2, SLC14A2 and ABCA1. By RNA-seq, we identified a wide repertoire of mRNAs (e.g. PRM1, OAZ3, DNAJB8, TPPP2 and TNP1) and miRNAs (e.g. ssc-miR-30d, ssc-miR-34c, ssc-miR-30c-5p, ssc-miR-191, members of the let-7 family and ssc-miR-425-5p) with functions related to sperm biology. We detected 6128 significant correlations (P-value ≤ 0.05) between sperm traits and mRNA abundances. By expression (e)GWAS, we identified three trans-expression QTL involving the genes IQCJ, ACTR2 and HARS. Using the GWAS and RNA-seq data, we built a gene interaction network. We considered that the genes and interactions that were present in both the GWAS and RNA-seq networks had a higher probability of being actually involved in sperm quality and used them to build a robust gene interaction network. In addition, in the final network we included genes with RNA abundances correlated with more than four semen traits and miRNAs interacting with the genes on the network. The final network was enriched for genes involved in gamete generation and development, meiotic cell cycle, DNA repair or embryo implantation. Finally, we designed a panel of 73 SNPs based on the GWAS, eGWAS and final network data, that explains between 5% (for sperm cell concentration) and 36% (for percentage of neck abnormalities) of the phenotypic variance of the sperm traits. CONCLUSIONS: By applying a systems biology approach, we identified genes that potentially affect sperm quality and constructed a SNP panel that explains a substantial part of the phenotypic variance for semen quality in our study and that should be tested in other swine populations to evaluate its relevance for the pig breeding sector.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Infertilidade Masculina/genética , RNA-Seq/métodos , Espermatozoides/fisiologia , Suínos/genética , Biologia de Sistemas/métodos , Animais , Estudo de Associação Genômica Ampla/veterinária , Infertilidade Masculina/veterinária , Masculino , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , RNA-Seq/veterinária , Espermatozoides/metabolismo , Suínos/fisiologia
15.
Theriogenology ; 157: 525-533, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32971422

RESUMO

The microbiome plays a key role in homeostasis and health and it has been also linked to fertility and semen quality in several animal species including swine. Despite the more than likely importance of sperm bacteria on the boar's reproductive ability and the dissemination of pathogens and antimicrobial resistance genes, the high throughput characterization of the swine sperm microbiome remains scarce. We carried RNA-seq on 40 ejaculates each from a different Pietrain boar and found that a proportion of the sequencing reads did not map to the Sus scrofa genome. The current study aimed at using these reads not belonging to pig to carry a pilot study to profile the boar sperm bacterial population and its relation with 7 semen quality traits. We found that the boar sperm contains a broad population of bacteria. The most abundant phyla were Proteobacteria (39.1%), Firmicutes (27.5%), Actinobacteria (14.9%) and Bacteroidetes (5.7%). The predominant species contaminated sperm after ejaculation from soil, faeces and water sources (Bacillus megaterium, Brachybacterium faecium, Bacillus coagulans). Some potential pathogens were also found but at relatively low levels (Escherichia coli, Clostridioides difficile, Clostridium perfringens, Clostridium botulinum and Mycobacterium tuberculosis). We also identified 3 potential antibiotic resistant genes from E. coli against chloramphenicol, Neisseria meningitidis against spectinomycin and Staphylococcus aureus against linezolid. None of these genes were highly abundant. Finally, we classified the ejaculates into categories according to their bacterial features and semen quality parameters and identified two categories that significantly differed for 5 semen quality traits and 13 bacterial features including the genera Acinetobacter, Stenotrophomonas and Rhodobacter. Our results show that boar semen contains a bacterial community, including potential pathogens and putative antibiotic resistance genes, and that these bacteria may affect its reproductive performance.


Assuntos
Microbiota , Análise do Sêmen , Actinobacteria , Animais , Escherichia coli , Masculino , Projetos Piloto , RNA-Seq/veterinária , Sêmen , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides , Suínos
16.
DNA Res ; 27(5)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-32931559

RESUMO

Transmission Ratio Distortion (TRD), the uneven transmission of an allele from a parent to its offspring, can be caused by allelic differences affecting gametogenesis, fertilization or embryogenesis. However, TRD remains vaguely studied at a genomic scale. We sequenced the diploid and haploid genomes of three boars from leukocytes and spermatozoa at 50x to shed light into the genetic basis of spermatogenesis-caused Allelic Ratio Distortion (ARD). We first developed a Binomial model to identify ARD by simultaneously analysing all three males. This led to the identification of 55 ARD SNPs, most of which were animal-specific. We then evaluated ARD individually within each pig by a Fisher's exact test and identified two shared genes (TOP3A and UNC5B) and four shared genomic regions harbouring distinct ARD SNPs in the three boars. The shared genomic regions contained candidate genes with functions related to spermatogenesis including AK7, ARID4B, BDKRB2, GSK3B, NID1, NSMCE1, PALB2, VRK1 and ZC3H13. Using the Fisher's test, we also identified 378 genes containing variants with protein damaging potential in at least one boar, a high proportion of which, including FAM120B, TDRD15, JAM2 or AOX4 among others, are associated to spermatogenesis. Overall, our results show that sperm is subjected to ARD with variants associated to a wide variety of genes involved in different stages of spermatogenesis.


Assuntos
Alelos , Padrões de Herança , Modelos Genéticos , Espermatogênese , Espermatozoides , Sus scrofa/genética , Animais , Masculino , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
17.
Sci Rep ; 10(1): 12634, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32724217

RESUMO

The skin microbiota interacts with the host immune response to maintain the homeostasis. Changes in the skin microbiota are linked to the onset and the progression of several diseases, including tumors. We characterized the skin surface and dermal microbiota of 11 dogs affected by spontaneous mast cell tumor (MCT), using skin contralateral sites as intra-animal healthy controls. The microbial profile differed between healthy and tumor skin surfaces and dermis, demonstrating that the change in microbiota composition is related to the presence of MCT. The number of observed taxa between MCT and healthy skin surfaces was detected, showing a decrease in number and heterogeneity of taxa over the skin surface of MCT, at both inter- and intra-individual level. Preliminary data on bacterial population of MCT dermis, obtained only on three dogs, demonstrated an intra-individual reduction of taxa number when compared to the skin surface. Taxonomy reveals an increase of Firmicutes phylum and Corynebacteriaceae family in MCT skin surface when compared to the healthy contralateral. In conclusion, we demonstrate that microbial population of skin surface and dermis is related to mast cell tumor. Our study provides the basis for future investigations aiming to better define the interaction between mast cell tumors, microbiota and host immune response.


Assuntos
Derme/microbiologia , Doenças do Cão/microbiologia , Cães/microbiologia , Mastócitos/patologia , Microbiota , Neoplasias/microbiologia , Neoplasias/veterinária , Animais , Análise de Escalonamento Multidimensional
18.
Sci Rep ; 10(1): 7985, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32409652

RESUMO

Circular RNAs (circRNAs) are emerging as a novel class of noncoding RNAs which potential role as gene regulators is quickly gaining interest. circRNAs have been studied in different tissues and cell types across several animal species. However, a thorough characterization of the circRNAome in ejaculated sperm remains unexplored. In this study, we profiled the sperm circRNA catalogue using 40 porcine ejaculates. A complex population of 1,598 circRNAs was shared in at least 30 of the 40 samples. Generally speaking, the predicted circRNAs presented low abundances and were tissue-specific. Around 80% of the circRNAs identified in the boar sperm were reported as novel. Results from abundance correlation between circRNAs and miRNAs together with the prediction of microRNA (miRNA) target sites in circRNAs suggested that circRNAs may act as miRNA sponges. Moreover, we found significant correlations between the abundance of 148 exonic circRNAs and sperm motility parameters. Two of these correlations, involving ssc_circ_1458 and ssc_circ_1321, were confirmed by RT-qPCR using 36 additional samples with extreme and opposite sperm motility values. Our study provides a thorough characterization of circRNAs in sperm and suggests that circRNAs hold potential as noninvasive biomarkers for sperm quality and male fertility.


Assuntos
RNA Circular , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Animais , Biomarcadores , Cruzamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Masculino , MicroRNAs/genética , Suínos , Transcriptoma
19.
J Dairy Sci ; 103(3): 2693-2700, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980229

RESUMO

The identification of milk microbial communities in ruminants is relevant for understanding the association between milk microbiota and health status. The most common approach for studying the microbiota is amplifying and sequencing specific hypervariable regions of the 16S rRNA gene using massive sequencing techniques. However, the taxonomic resolution is limited to family and, in some cases, genus level. We aimed to improve taxonomic classification of the water buffalo milk microbiota by amplifying and sequencing the full-length 16S rRNA gene (1,500 bp) using Nanopore sequencing (single-molecule sequencing). When comparing with short-read results, we improved the taxonomic classification, reaching species level. We identified the main microbial agents of subclinical mastitis at the species level that were in accordance with the microbiological culture results. These results confirm the potential of single-molecule sequencing for in-depth analysis of microbial populations in dairy animals.


Assuntos
Búfalos/microbiologia , Mastite/veterinária , Microbiota/genética , Leite/microbiologia , Sequenciamento por Nanoporos/veterinária , Animais , Feminino , Mastite/microbiologia , RNA Ribossômico 16S/genética
20.
Anim Microbiome ; 2(1): 40, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33499975

RESUMO

BACKGROUND: The effect of the production environment and different management practices in rabbit cecal microbiota remains poorly understood. While previous studies have proved the impact of the age or the feed composition, research in the breeding farm and other animal management aspects, such as the presence of antibiotics in the feed or the level of feeding, is still needed. Characterization of microbial diversity and composition of growing rabbits raised under different conditions could help better understand the role these practices play in cecal microbial communities and how it may result in different animal performance. RESULTS: Four hundred twenty-five meat rabbits raised in two different facilities, fed under two feeding regimes (ad libitum or restricted) with feed supplemented or free of antibiotics, were selected for this study. A 16S rRNA gene-based assessment through the MiSeq Illumina sequencing platform was performed on cecal samples collected from these individuals at slaughter. Different univariate and multivariate approaches were conducted to unravel the influence of the different factors on microbial alpha diversity and composition at phylum, genus and OTU taxonomic levels. The animals raised in the facility harboring the most stable environmental conditions had greater, and less variable, microbial richness and diversity. Bootstrap univariate analyses of variance and sparse partial least squares-discriminant analyses endorsed that farm conditions exerted an important influence on rabbit microbiota since the relative abundances of many taxa were found differentially represented between both facilities at all taxonomic levels characterized. Furthermore, only five OTUs were needed to achieve a perfect classification of samples according to the facility where animals were raised. The level of feeding and the presence of antibiotics did not modify the global alpha diversity but had an impact on some bacteria relative abundances, albeit in a small number of taxa compared with farm, which is consistent with the lower sample classification power according to these factors achieved using microbial information. CONCLUSIONS: This study reveals that factors associated with the farm effect and other management factors, such as the presence of antibiotics in the diet or the feeding level, modify cecal microbial communities. It highlights the importance of offering a controlled breeding environment that reduces differences in microbial cecal composition that could be responsible for different animal performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA