Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37960354

RESUMO

Microbiota-host communication is primarily achieved by secreted factors that can penetrate the mucosal surface, such as extracellular membrane vesicles (EVs). The EVs released by the gut microbiota have been extensively studied in cellular and experimental models of human diseases. However, little is known about their in vivo effects in early life, specifically regarding immune and intestinal maturation. This study aimed to investigate the effects of daily administration of EVs from probiotic and commensal E. coli strains in healthy suckling rats during the first 16 days of life. On days 8 and 16, we assessed various intestinal and systemic variables in relation to animal growth, humoral and cellular immunity, epithelial barrier maturation, and intestinal architecture. On day 16, animals given probiotic/microbiota EVs exhibited higher levels of plasma IgG, IgA, and IgM and a greater proportion of Tc, NK, and NKT cells in the spleen. In the small intestine, EVs increased the villi area and modulated the expression of genes related to immune function, inflammation, and intestinal permeability, shifting towards an anti-inflammatory and barrier protective profile from day 8. In conclusion, interventions involving probiotic/microbiota EVs may represent a safe postbiotic strategy to stimulate immunity and intestinal maturation in early life.


Assuntos
Vesículas Extracelulares , Microbiota , Humanos , Ratos , Animais , Escherichia coli/metabolismo , Intestinos , Mucosa Intestinal , Vesículas Extracelulares/metabolismo
2.
Nutrients ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111215

RESUMO

Viral infections are described as modifying host gene expression; however, there is limited insight regarding rotavirus (RV) infections. This study aimed to assess the changes in intestinal gene expression after RV infection in a preclinical model, and the effect of 2-fucosyllactose (2'-FL) on this process. From days 2 to 8 of life, rats were supplemented with the dietary oligosaccharide 2'-FL or vehicle. In addition, an RV was inoculated on day 5 to nonsupplemented animals (RV group) and to 2'-FL-fed animals (RV+2'-FL group). Incidence and severity of diarrhea were established. A portion from the middle part of the small intestine was excised for gene expression analysis by microarray kit and qPCR. In nonsupplemented animals, RV-induced diarrhea upregulated host antiviral genes (e.g., Oas1a, Irf7, Ifi44, Isg15) and downregulated several genes involved in absorptive processes and intestinal maturation (e.g., Onecut2, and Ccl19). The 2'-FL-supplemented and infected animals had less diarrhea; however, their gene expression was affected in a similar way as the control-infected animals, with the exception of some immunity/maturation markers that were differentially expressed (e.g., Ccl12 and Afp). Overall, assessing the expression of these key genes may be useful in the evaluation of the efficacy of nutritional interventions or treatments for RV infection.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Ratos , Infecções por Rotavirus/tratamento farmacológico , Diarreia/terapia , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA