Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148112

RESUMO

The endothelial junction component vascular endothelial (VE)-cadherin governs junctional dynamics in the blood and lymphatic vasculature. Here, we explored how lymphatic junction stability is modulated by elevated VEGFA signaling to facilitate metastasis to sentinel lymph nodes. Zippering of VE-cadherin junctions was established in dermal initial lymphatic vessels after VEGFA injection and in tumor-proximal lymphatics in mice. Shape analysis of pan-cellular VE-cadherin fragments revealed that junctional zippering was accompanied by accumulation of small round-shaped VE-cadherin fragments in the lymphatic endothelium. In mice expressing a mutant VEGFR2 lacking the Y949 phosphosite (Vegfr2 Y949F/Y949F ) required for activation of Src family kinases, zippering of lymphatic junctions persisted, whereas accumulation of small VE-cadherin fragments was suppressed. Moreover, tumor cell entry into initial lymphatic vessels and subsequent metastatic spread to lymph nodes was reduced in mutant mice compared with WT, after challenge with B16F10 melanoma or EO771 breast cancer. We conclude that VEGFA mediates zippering of VE-cadherin junctions in initial lymphatics. Zippering is accompanied by increased VE-cadherin fragmentation through VEGFA-induced Src kinase activation, correlating with tumor dissemination to sentinel lymph nodes.


Assuntos
Células Endoteliais , Vasos Linfáticos , Camundongos , Animais , Metástase Linfática , Caderinas/genética , Quinases da Família src/genética
2.
Mol Genet Metab ; 138(4): 107552, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889041

RESUMO

BACKGROUND AND AIMS: Low-density lipoprotein (LDL) plasma concentration decline is a biomarker for acute inflammatory diseases, including coronavirus disease-2019 (COVID-19). Phenotypic changes in LDL during COVID-19 may be equally related to adverse clinical outcomes. METHODS: Individuals hospitalized due to COVID-19 (n = 40) were enrolled. Blood samples were collected on days 0, 2, 4, 6, and 30 (D0, D2, D4, D6, and D30). Oxidized LDL (ox-LDL), and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity were measured. In a consecutive series of cases (n = 13), LDL was isolated by gradient ultracentrifugation from D0 and D6 and was quantified by lipidomic analysis. Association between clinical outcomes and LDL phenotypic changes was investigated. RESULTS: In the first 30 days, 42.5% of participants died due to Covid-19. The serum ox-LDL increased from D0 to D6 (p < 0.005) and decreased at D30. Moreover, individuals who had an ox-LDL increase from D0 to D6 to over the 90th percentile died. The plasma Lp-PLA2 activity also increased progressively from D0 to D30 (p < 0.005), and the change from D0 to D6 in Lp-PLA2 and ox-LDL were positively correlated (r = 0.65, p < 0.0001). An exploratory untargeted lipidomic analysis uncovered 308 individual lipids in isolated LDL particles. Paired-test analysis from D0 and D6 revealed higher concentrations of 32 lipid species during disease progression, mainly represented by lysophosphatidyl choline and phosphatidylinositol. In addition, 69 lipid species were exclusively modulated in the LDL particles from non-survivors as compared to survivors. CONCLUSIONS: Phenotypic changes in LDL particles are associated with disease progression and adverse clinical outcomes in COVID-19 patients and could serve as a potential prognostic biomarker.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , COVID-19 , Humanos , Lipoproteínas LDL , Biomarcadores , Lisofosfatidilcolinas
3.
Nat Cardiovasc Res ; 1(12): 1156-1173, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936984

RESUMO

Vascular endothelial (VE)-cadherin in endothelial adherens junctions is an essential component of the vascular barrier, critical for tissue homeostasis and implicated in diseases such as cancer and retinopathies. Inhibitors of Src cytoplasmic tyrosine kinase have been applied to suppress VE-cadherin tyrosine phosphorylation and prevent excessive leakage, edema and high interstitial pressure. Here we show that the Src-related Yes tyrosine kinase, rather than Src, is localized at endothelial cell (EC) junctions where it becomes activated in a flow-dependent manner. EC-specific Yes1 deletion suppresses VE-cadherin phosphorylation and arrests VE-cadherin at EC junctions. This is accompanied by loss of EC collective migration and exaggerated agonist-induced macromolecular leakage. Overexpression of Yes1 causes ectopic VE-cadherin phosphorylation, while vascular leakage is unaffected. In contrast, in EC-specific Src-deficiency, VE-cadherin internalization is maintained, and leakage is suppressed. In conclusion, Yes-mediated phosphorylation regulates constitutive VE-cadherin turnover, thereby maintaining endothelial junction plasticity and vascular integrity.

4.
Circulation ; 144(20): 1629-1645, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34636652

RESUMO

BACKGROUND: PALMD (palmdelphin) belongs to the family of paralemmin proteins implicated in cytoskeletal regulation. Single nucleotide polymorphisms in the PALMD locus that result in reduced expression are strong risk factors for development of calcific aortic valve stenosis and predict severity of the disease. METHODS: Immunodetection and public database screening showed dominant expression of PALMD in endothelial cells (ECs) in brain and cardiovascular tissues including aortic valves. Mass spectrometry, coimmunoprecipitation, and immunofluorescent staining allowed identification of PALMD partners. The consequence of loss of PALMD expression was assessed in small interferring RNA-treated EC cultures, knockout mice, and human valve samples. RNA sequencing of ECs and transcript arrays on valve samples from an aortic valve study cohort including patients with the single nucleotide polymorphism rs7543130 informed about gene regulatory changes. RESULTS: ECs express the cytosolic PALMD-KKVI splice variant, which associated with RANGAP1 (RAN GTP hydrolyase activating protein 1). RANGAP1 regulates the activity of the GTPase RAN and thereby nucleocytoplasmic shuttling via XPO1 (Exportin1). Reduced PALMD expression resulted in subcellular relocalization of RANGAP1 and XPO1, and nuclear arrest of the XPO1 cargoes p53 and p21. This indicates an important role for PALMD in nucleocytoplasmic transport and consequently in gene regulation because of the effect on localization of transcriptional regulators. Changes in EC responsiveness on loss of PALMD expression included failure to form a perinuclear actin cap when exposed to flow, indicating lack of protection against mechanical stress. Loss of the actin cap correlated with misalignment of the nuclear long axis relative to the cell body, observed in PALMD-deficient ECs, Palmd-/- mouse aorta, and human aortic valve samples derived from patients with calcific aortic valve stenosis. In agreement with these changes in EC behavior, gene ontology analysis showed enrichment of nuclear- and cytoskeleton-related terms in PALMD-silenced ECs. CONCLUSIONS: We identify RANGAP1 as a PALMD partner in ECs. Disrupting the PALMD/RANGAP1 complex alters the subcellular localization of RANGAP1 and XPO1, and leads to nuclear arrest of the XPO1 cargoes p53 and p21, accompanied by gene regulatory changes and loss of actin-dependent nuclear resilience. Combined, these consequences of reduced PALMD expression provide a mechanistic underpinning for PALMD's contribution to calcific aortic valve stenosis pathology.


Assuntos
Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Proteínas de Membrana/genética , Estresse Mecânico , Idoso , Animais , Comunicação Celular/genética , Linhagem Celular , Movimento Celular/genética , Células Cultivadas , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Ontologia Genética , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Transporte Proteico
5.
Front Physiol ; 11: 763, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733273

RESUMO

AIM: The acute phase of myocardial infarction (MI) is accompanied by edema contributing to tissue damage and disease outcome. Here, we aimed to identify the mechanism whereby vascular endothelial growth factor (VEGF)-A induces myocardial edema in the acute phase of MI to eventually promote development of therapeutics to specifically suppress VEGFA-regulated vascular permeability while preserving collateral vessel formation. METHODS AND RESULTS: VEGFA regulates vascular permeability and edema by activation of VEGF receptor-2 (VEGFR2), leading to induction of several signaling pathways including the cytoplasmic tyrosine kinase c-Src. The activated c-Src in turn phosphorylates vascular endothelial (VE)-cadherin, leading to dissociation of endothelial adherens junctions. A particular tyrosine at position 949 in mouse VEGFR2 has been shown to be required for activation of c-Src. Wild-type mice and mice with phenylalanine replacing tyrosine (Y) 949 in VEGFR2 (Vegfr2 Y949F/Y949F ) were challenged with MI through permanent ligation of the left anterior descending coronary artery. The infarct size was similar in wild-type and mutant mice, but left ventricular wall edema and fibrinogen deposition, indicative of vascular leakage, were reduced in the Vegfr2 Y949F/Y949F strain. When challenged with large infarcts, the Vegfr2 Y949F/Y949F mice survived significantly better than the wild-type strain. Moreover, neutrophil infiltration and levels of myeloperoxidase were low in the infarcted Vegfr2 Y949F/Y949F hearts, correlating with improved survival. In vivo tyrosine phosphorylation of VE-cadherin at Y685, implicated in regulation of vascular permeability, was induced by circulating VEGFA in the wild-type but remained at baseline levels in the Vegfr2 Y949F/Y949F hearts. CONCLUSION: Suppression of VEGFA/VEGFR2-regulated vascular permeability leads to diminished edema without affecting vascular density correlating with improved myocardial parameters and survival after MI.

7.
EMBO Rep ; 20(11): e47845, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31545012

RESUMO

Exaggerated signaling by vascular endothelial growth factor (VEGF)-A and its receptor, VEGFR2, in pathologies results in poor vessel function. Still, pharmacological suppression of VEGFA/VEGFR2 may aggravate disease. Delineating VEGFR2 signaling in vivo provides strategies for suppression of specific VEGFR2-induced pathways. Three VEGFR2 tyrosine residues (Y949, Y1212, and Y1173) induce downstream signaling. Here, we show that knock-in of phenylalanine to create VEGFR2 Y1212F in C57Bl/6 and FVB mouse strains leads to loss of growth factor receptor-bound protein 2- and phosphoinositide 3'-kinase (PI3K)p85 signaling. C57Bl/6 Vegfr2Y1212F/Y1212F show reduced embryonic endothelial cell (EC) proliferation and partial lethality. FVB Vegfr2Y1212F/Y1212F show reduced postnatal EC proliferation. Reduced EC proliferation in Vegfr2Y1212F/Y1212F explants is rescued by c-Myc overexpression. We conclude that VEGFR2 Y1212 signaling induces activation of extracellular-signal-regulated kinase (ERK)1/2 and Akt pathways required for c-Myc-dependent gene regulation, endothelial proliferation, and vessel stability.

9.
Nat Commun ; 9(1): 2746, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013228

RESUMO

The vasculature undergoes changes in diameter, permeability and blood flow in response to specific stimuli. The dynamics and interdependence of these responses in different vessels are largely unknown. Here we report a non-invasive technique to study dynamic events in different vessel categories by multi-photon microscopy and an image analysis tool, RVDM (relative velocity, direction, and morphology) allowing the identification of vessel categories by their red blood cell (RBC) parameters. Moreover, Claudin5 promoter-driven green fluorescent protein (GFP) expression is used to distinguish capillary subtypes. Intradermal injection of vascular endothelial growth factor A (VEGFA) is shown to induce leakage of circulating dextran, with vessel-type-dependent kinetics, from capillaries and venules devoid of GFP expression. VEGFA-induced leakage in capillaries coincides with vessel dilation and reduced flow velocity. Thus, intravital imaging of non-invasive stimulation combined with RVDM analysis allows for recording and quantification of very rapid events in the vasculature.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Vasos Sanguíneos/diagnóstico por imagem , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Molecular/métodos , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Vasos Sanguíneos/anatomia & histologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/fisiologia , Claudina-5/genética , Claudina-5/metabolismo , Feminino , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Imagem Molecular/instrumentação , Regiões Promotoras Genéticas , Fator A de Crescimento do Endotélio Vascular/administração & dosagem
10.
Acta Neuropathol ; 136(2): 255-271, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29730775

RESUMO

Olfactory neuroblastoma/esthesioneuroblastoma (ONB) is an uncommon neuroectodermal neoplasm thought to arise from the olfactory epithelium. Little is known about its molecular pathogenesis. For this study, a retrospective cohort of n = 66 tumor samples with the institutional diagnosis of ONB was analyzed by immunohistochemistry, genome-wide DNA methylation profiling, copy number analysis, and in a subset, next-generation panel sequencing of 560 tumor-associated genes. DNA methylation profiles were compared to those of relevant differential diagnoses of ONB. Unsupervised hierarchical clustering analysis of DNA methylation data revealed four subgroups among institutionally diagnosed ONB. The largest group (n = 42, 64%, Core ONB) presented with classical ONB histology and no overlap with other classes upon methylation profiling-based t-distributed stochastic neighbor embedding (t-SNE) analysis. A second DNA methylation group (n = 7, 11%) with CpG island methylator phenotype (CIMP) consisted of cases with strong expression of cytokeratin, no or scarce chromogranin A expression and IDH2 hotspot mutation in all cases. T-SNE analysis clustered these cases together with sinonasal carcinoma with IDH2 mutation. Four cases (6%) formed a small group characterized by an overall high level of DNA methylation, but without CIMP. The fourth group consisted of 13 cases that had heterogeneous DNA methylation profiles and strong cytokeratin expression in most cases. In t-SNE analysis, these cases mostly grouped among sinonasal adenocarcinoma, squamous cell carcinoma, and undifferentiated carcinoma. Copy number analysis indicated highly recurrent chromosomal changes among Core ONB with a high frequency of combined loss of chromosome 1-4, 8-10, and 12. NGS sequencing did not reveal highly recurrent mutations in ONB, with the only recurrently mutated genes being TP53 and DNMT3A. In conclusion, we demonstrate that institutionally diagnosed ONB are a heterogeneous group of tumors. Expression of cytokeratin, chromogranin A, the mutational status of IDH2 as well as DNA methylation patterns may greatly aid in the precise classification of ONB.


Assuntos
Metilação de DNA , Neuroblastoma/classificação , Neuroblastoma/genética , Transtornos do Olfato/classificação , Transtornos do Olfato/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Criança , Diagnóstico Diferencial , Feminino , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Transcriptoma , Adulto Jovem
11.
Curr Opin Immunol ; 53: 58-63, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29680577

RESUMO

Lymphatic vessels are established by differentiation of lymphendothelial progenitors during embryogenesis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing ones is rare in the healthy adult but takes place during pathological conditions such as inflammation, tissue repair and tumor growth. Conditions of dysfunctional lymphatics exist after surgical interventions or in certain genetic diseases. A key lymphangiogenic stimulator is vascular endothelial growth factor-C (VEGFC) acting on VEGF receptor-3 (VEGFR3) expressed on lymphendothelial cells. Other cytokines may act directly to regulate lymphangiogenesis positively or negatively, or indirectly by inducing expression of VEGFC. This review describes different known lymphangiogenic cytokines, their mechanism of action and role in lymphangiogenesis in health and disease.


Assuntos
Citocinas/metabolismo , Células Endoteliais/fisiologia , Linfangiogênese , Vasos Linfáticos/fisiologia , Neoplasias/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Carcinogênese , Diferenciação Celular , Humanos , Cicatrização
12.
Cancer Lett ; 386: 196-207, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894957

RESUMO

Epigenetic modifications have been shown to be important in developmental tumors as Ewing sarcoma. We profiled the DNA methylation status of 15 primary tumors, 7 cell lines, 10 healthy tissues and 4 human mesenchymal stem cells lines samples using the Infinium Human Methylation 450K. Differential methylation analysis between Ewing sarcoma and reference samples revealed 1166 hypermethylated and 864 hypomethylated CpG sites (Bonferroni p < 0.05, δ-ß-value with absolute difference of >0.20) corresponding to 392 and 470 genes respectively. Gene Ontology analysis of genes differentially methylated in Ewing sarcoma samples showed a significant enrichment of developmental genes. Membrane and cell signal genes were also enriched, among those, 11 were related to caveola formation. We identified differential hypermethylation of CpGs located in the body and S-Shore of the PTRF gene in Ewing sarcoma that correlated with its repressed transcriptional state. Reintroduction of PTRF/Cavin-1 in Ewing sarcoma cells revealed a role of this protein as a tumor suppressor. Restoration of caveolae in the membrane of Ewing sarcoma cells, by exogenously reintroducing PTRF, disrupts the MDM2/p53 complex, which consequently results in the activation of p53 and the induction of apoptosis.


Assuntos
Neoplasias Ósseas/genética , Caveolina 1/genética , Metilação de DNA , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Genes Supressores de Tumor , Proteínas de Ligação a RNA/genética , Sarcoma de Ewing/genética , Animais , Apoptose , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Fosforilação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Transdução de Sinais , Espanha , Transfecção , Carga Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Oncotarget ; 7(35): 56889-56903, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27487136

RESUMO

Ewing sarcoma (ES) is a bone and soft tissue sarcoma affecting mostly children and young adults. Caveolin-1 (CAV1) is a well-known target of EWS/FLI1, the main driver of ES, with an oncogenic role in ES. We have previously described how CAV1 is able to induce metastasis in ES via matrix metalloproteinase-9 (MMP-9). In the present study we showed how CAV1 silencing in ES reduced MEK1/2 and ERK1/2 phosphorylation. Accordingly, chemical inhibition of MEK1/2 resulted in reduction in MMP-9 expression and activity that correlated with reduced migration and invasion. IQ Motif Containing GTPase Activating Protein 1 (IQGAP1) silencing reduced MEK1/2 and ERK1/2 phosphorylation and MMP-9 expression. Furthermore, IQGAP1 silenced cells showed a marked decrease in their migratory and invasive capacity. We demonstrated that CAV1 and IQGAP1 localize in close proximity at the cellular edge, thus IQGAP1 could be the connecting node between CAV1 and MEK/ERK in ES metastatic phenotype. Analysis of the phosphorylation profile of CAV1-silenced cells showed a decrease of p-ribosomal protein S6 (RPS6). RPS6 can be phosphorylated by p90 ribosomal S6 kinases (RSK) proteins. CAV1-silenced cells showed reduced levels of p-RSK1 and treatment with U0126 provoked the same effect. Despite not affecting ERK1/2 and RPS6 phosphorylation status neither MMP-9 expression nor activity, RSK1 silencing resulted in a reduced migratory and invasive capacity in vitro and reduced incidence of metastases in vivo in a novel orthotopic model. The present work provides new insights into CAV1-driven metastatic process in ES unveiling novel key nodes.


Assuntos
Caveolina 1/metabolismo , Sistema de Sinalização das MAP Quinases , Metaloproteinase 9 da Matriz/metabolismo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Feminino , Inativação Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Fusão Oncogênica/metabolismo , Fosforilação , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Proteína S6 Ribossômica/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
14.
Nat Commun ; 7: 11017, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27005951

RESUMO

The specific role of VEGFA-induced permeability and vascular leakage in physiology and pathology has remained unclear. Here we show that VEGFA-induced vascular leakage depends on signalling initiated via the VEGFR2 phosphosite Y949, regulating dynamic c-Src and VE-cadherin phosphorylation. Abolished Y949 signalling in the mouse mutant Vegfr2(Y949F/Y949F) leads to VEGFA-resistant endothelial adherens junctions and a block in molecular extravasation. Vessels in Vegfr2(Y949F/Y949F) mice remain sensitive to inflammatory cytokines, and vascular morphology, blood pressure and flow parameters are normal. Tumour-bearing Vegfr2(Y949F/Y949F) mice display reduced vascular leakage and oedema, improved response to chemotherapy and, importantly, reduced metastatic spread. The inflammatory infiltration in the tumour micro-environment is unaffected. Blocking VEGFA-induced disassembly of endothelial junctions, thereby suppressing tumour oedema and metastatic spread, may be preferable to full vascular suppression in the treatment of certain cancer forms.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/genética , Células Endoteliais/metabolismo , Glioma/patologia , Melanoma Experimental/patologia , Metástase Neoplásica/genética , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Junções Aderentes , Animais , Edema , Endotélio Vascular/metabolismo , Camundongos , Microesferas , Mutação , Transplante de Neoplasias , Fosforilação/genética , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Oncotarget ; 5(20): 9744-55, 2014 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-25313138

RESUMO

Rhabdomyosarcoma is the most common soft tissue sarcoma of childhood and adolescence. Despite advances in therapy, patients with histological variant of rhabdomyosarcoma known as alveolar rhabdomyosarcoma (ARMS) have a 5-year survival of less than 30%. Caveolin-1 (CAV1), encoding the structural component of cellular caveolae, is a suggested tumor suppressor gene involved in cell signaling. In the present study we report that compared to other forms of rhabdomyosarcoma (RMS) CAV1 expression is either undetectable or very low in ARMS cell lines and tumor samples. DNA methylation analysis of the promoter region and azacytidine-induced re-expression suggest the involvement of epigenetic mechanisms in the silencing of CAV1. Reintroduction of CAV1 in three of these cell lines impairs their clonogenic capacity and promotes features of muscular differentiation. In vitro, CAV1-expressing cells show high expression of Caveolin-3 (CAV3), a muscular differentiation marker. Blockade of MAPK signaling is also observed. In vivo, CAV1-expressing xenografts show growth delay, features of muscular differentiation and increased cell death. In summary, our results suggest that CAV1 could function as a potent tumor suppressor in ARMS tumors. Inhibition of CAV1 function therefore, could contribute to aberrant cell proliferation, leading to ARMS development.


Assuntos
Caveolina 1/metabolismo , Rabdomiossarcoma Alveolar/metabolismo , Rabdomiossarcoma Alveolar/patologia , Animais , Caveolina 1/genética , Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Regulação para Baixo , Epigenômica , Regulação Neoplásica da Expressão Gênica , Terapia Genética , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Rabdomiossarcoma Alveolar/genética , Rabdomiossarcoma Alveolar/terapia , Transdução de Sinais , Transfecção
16.
PLoS One ; 8(8): e71449, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23951165

RESUMO

Angiogenesis is the result of the combined activity of the tumor microenvironment and signaling molecules. The angiogenic switch is represented as an imbalance between pro- and anti-angiogenic factors and is a rate-limiting step in the development of tumors. Eph receptor tyrosine kinases and their membrane-anchored ligands, known as ephrins, constitute the largest receptor tyrosine kinase (RTK) subfamily and are considered a major family of pro-angiogenic RTKs. Ewing sarcoma (EWS) is a highly aggressive bone and soft tissue tumor affecting children and young adults. As other solid tumors, EWS are reliant on a functional vascular network for the delivery of nutrients and oxygen and for the removal of waste. Based on the biological roles of EphA2 in promoting angiogenesis, we explored the functional role of this receptor and its relationship with caveolin-1 (CAV1) in EWS angiogenesis. We demonstrated that lack of CAV1 results in a significant reduction in micro vascular density (MVD) on 3 different in vivo models. In vitro, this phenomenon correlated with inactivation of EphA2 receptor, lack of AKT response and downregulation of bFGF. We also demonstrated that secreted bFGF from EWS cells acted as chemoattractant for endothelial cells. Furthermore, interaction between EphA2 and CAV1 was necessary for the right localization and signaling of the receptor to produce bFGF through AKT and promote migration of endothelial cells. Finally, introduction of a dominant-negative form of EphA2 into EWS cells mostly reproduced the effects occurred by CAV1 silencing, strongly suggesting that the axis EphA2-CAV1 participates in the promotion of endothelial cell migration toward the tumors favoring EWS angiogenesis.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Caveolina 1/metabolismo , Fator 2 de Crescimento de Fibroblastos/biossíntese , Neovascularização Patológica/metabolismo , Receptor EphA2/metabolismo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Animais , Neoplasias Ósseas/genética , Caveolina 1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Inativação Gênica , Xenoenxertos , Humanos , Camundongos , Camundongos Knockout , Neovascularização Patológica/genética , Ligação Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor EphA2/genética , Sarcoma de Ewing/genética , Transdução de Sinais , Transcrição Gênica , Carga Tumoral/genética
17.
Sarcoma ; 2012: 626094, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701332

RESUMO

Sarcomas are a heterogeneous group of mesenchymal malignancies that very often lead to death. Nowadays, chemotherapy is the only available treatment for most sarcomas but there are few active drugs and clinical results still remain very poor. Thus, there is an imperious need to find new therapeutic alternatives in order to improve sarcoma patient's outcome. During the last years, there have been described a number of new molecular pathways that have allowed us to know more about cancer biology and tumorigenesis. Sarcomas are one of the tumors in which more advances have been made. Identification of specific chromosomal translocations, some important pathways characterization such as mTOR pathway or the insulin-like growth factor pathway, the stunning development in angiogenesis knowledge, and brand new agents like viruses have lead to the development of new therapeutic options with promising results. This paper makes an exhaustive review of preclinical and clinical evidence of the most recent targeted therapies in sarcomas and provides a future view of treatments that may lead to improve prognosis of patients affected with this disease.

18.
Oncotarget ; 2(4): 305-12, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21471610

RESUMO

Sarcomas represent a heterogeneous group of tumors with a complex and difficult reproducible classification. Their pathogenesis is poorly understood and there are few effective treatment options for advanced disease. Caveolin-1 is a multifunctional scaffolding protein with multiple binding partners that regulates multiple cancer-associated processes including cellular transformation, tumor growth, cell death and survival, multidrug resistance, angiogenesis, cell migration and metastasis. However, ambiguous roles have been ascribed to caveolin-1 in signal transduction and cancer, including sarcomas. In particular, evidence indicating that caveolin-1 function is cell context dependent has been repeatedly reported. Caveolin-1 appears to act as a tumor suppressor protein at early stages of cancer progression. In contrast, a growing body of evidence indicates that caveolin-1 is up-regulated in several multidrug-resistant and metastatic cancer cell lines and human tumor specimens. This review is focused on the role of caveolin-1 in several soft tissue and bone sarcomas and discusses the use of this protein as a potential diagnostic and prognostic marker and as a therapeutic target.


Assuntos
Caveolina 1/fisiologia , Sarcoma/diagnóstico , Sarcoma/etiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/fisiologia , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/etiologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Caveolina 1/genética , Caveolina 1/metabolismo , Progressão da Doença , Humanos , Modelos Biológicos , Terapia de Alvo Molecular , Metástase Neoplásica , Sarcoma/genética , Sarcoma/patologia , Neoplasias de Tecidos Moles/diagnóstico , Neoplasias de Tecidos Moles/etiologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia
19.
Mol Cancer Res ; 8(11): 1489-500, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21106507

RESUMO

Metastasis is the final stage of tumor progression and is thought to be responsible for up to 90% of deaths associated with solid tumors. Caveolin-1 (CAV1) regulates multiple cancer-associated processes related to malignant tumor progression. In the present study, we tested the hypothesis that CAV1 modulates the metastatic ability of cells from the Ewing's sarcoma family of tumors (ESFT). First, we analyzed the expression of CAV1 by immunostaining a tissue microarray containing 43 paraffin-embedded ESFT tumors with known EWS translocations. Even though no evidence was found for a significant association between CAV1 expression and stage, size or tumor site, all metastatic samples (10 of 10) had significantly high CAV1 expression, suggesting that high CAV1 content could positively contribute to enhance ESFT metastasis. To determine the effect of CAV1 on the migratory and invasive capabilities of ESFT cells, we knocked down CAV1 expression in TC252 and A673 cells by stably transfecting a previously validated shRNA construct. In vitro, migration and invasion assays showed that for both cell lines, CAV1 knocked-down cells migrated and invaded significantly less (P ≤ 0.01) than control cells. Moreover, control A673 cells introduced into BALB/c nude mice by tail vein injection strongly colonized the lungs. In contrast, animals injected with CAV1 knocked-down cells showed either no incidence of metastasis or developed lung metastases after a significant delay (P < 0.0001). Finally, we show that the molecular mechanisms by which CAV1 carries out its key role in regulating ESFT metastasis involve matrix metalloproteinase production and activation as well as the control of the expression of SPARC, a known determinant of lung colonization.


Assuntos
Neoplasias Ósseas/patologia , Caveolina 1/biossíntese , Neoplasias Pulmonares/secundário , Sarcoma de Ewing/patologia , Animais , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Caveolina 1/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proteínas Ativadoras de GTPase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA