RESUMO
BACKGROUND: Schizophrenia is a complex polygenic disorder with subtle, distributed abnormalities in brain morphology. There are indications of shared genetic architecture between schizophrenia and brain measures despite low genetic correlations. Through the use of analytical methods that allow for mixed directions of effects, this overlap may be leveraged to improve our understanding of underlying mechanisms of schizophrenia and enrich polygenic risk prediction outcome. METHODS: We ran a multivariate genome-wide analysis of 175 brain morphology measures using data from 33,735 participants of the UK Biobank and analyzed the results in a conditional false discovery rate together with schizophrenia genome-wide association study summary statistics of the Psychiatric Genomics Consortium (PGC) Wave 3. We subsequently created a pleiotropy-enriched polygenic score based on the loci identified through the conditional false discovery rate approach and used this to predict schizophrenia in a nonoverlapping sample of 743 individuals with schizophrenia and 1074 healthy controls. RESULTS: We found that 20% of the loci and 50% of the genes significantly associated with schizophrenia were also associated with brain morphology. The conditional false discovery rate analysis identified 428 loci, including 267 novel loci, significantly associated with brain-linked schizophrenia risk, with functional annotation indicating high relevance for brain tissue. The pleiotropy-enriched polygenic score explained more variance in liability than conventional polygenic scores across several scenarios. CONCLUSIONS: Our results indicate strong genetic overlap between schizophrenia and brain morphology with mixed directions of effect. The results also illustrate the potential of exploiting polygenetic overlap between brain morphology and mental disorders to boost discovery of brain tissue-specific genetic variants and its use in polygenic risk frameworks.
Assuntos
Esquizofrenia , Encéfalo , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genéticaRESUMO
Stroke patients commonly suffer from post stroke fatigue (PSF). Despite a general consensus that brain perturbations constitute a precipitating event in the multifactorial etiology of PSF, the specific predictive value of conventional lesion characteristics such as size and localization remains unclear. The current study represents a novel approach to assess the neural correlates of PSF in chronic stroke patients. While previous research has focused primarily on lesion location or size, with mixed or inconclusive results, we targeted the extended structural network implicated by the lesion, and evaluated the added explanatory value of a structural disconnectivity approach with regards to the brain correlates of PSF. To this end, we estimated individual structural brain disconnectome maps in 84 S survivors in the chronic phase (≥3 months post stroke) using information about lesion location and normative white matter pathways obtained from 170 healthy individuals. PSF was measured by the Fatigue Severity Scale (FSS). Voxel wise analyses using non-parametric permutation-based inference were conducted on disconnectome maps to estimate regional effects of disconnectivity. Associations between PSF and global disconnectivity and clinical lesion characteristics were tested by linear models, and we estimated Bayes factor to quantify the evidence for the null and alternative hypotheses, respectively. The results revealed no significant associations between PSF and disconnectome measures or lesion characteristics, with moderate evidence in favor of the null hypothesis. These results suggest that symptoms of post-stroke fatigue among chronic stroke patients are not simply explained by lesion characteristics or the extent and distribution of structural brain disconnectome, and are discussed in light of methodological considerations.
Assuntos
Acidente Vascular Cerebral , Substância Branca , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Fadiga/etiologia , Humanos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagemRESUMO
Computerized cognitive training (CCT) combined with transcranial direct current stimulation (tDCS) has showed some promise in alleviating cognitive impairments in patients with brain disorders, but the robustness and possible mechanisms are unclear. In this prospective double-blind randomized clinical trial, we investigated the feasibility and effectiveness of combining CCT and tDCS, and tested the predictive value of and training-related changes in fMRI-based brain activation during attentive performance (multiple object tracking) obtained at inclusion, before initiating training, and after the three-weeks intervention in chronic stroke patients (>6 months since hospital admission). Patients were randomized to one of two groups, receiving CCT and either (a) tDCS targeting left dorsolateral prefrontal cortex (1 mA), or (b) sham tDCS, with 40s active stimulation (1 mA) before fade out of the current. Of note, 77 patients were enrolled in the study, 54 completed the cognitive training, and 48 completed all training and MRI sessions. We found significant improvement in performance across all trained tasks, but no additional gain of tDCS. fMRI-based brain activation showed high reliability, and higher cognitive performance was associated with increased tracking-related activation in the dorsal attention network and default mode network as well as anterior cingulate after compared to before the intervention. We found no significant associations between cognitive gain and brain activation measured before training or in the difference in activation after intervention. Combined, these results show significant training effects on trained cognitive tasks in stroke survivors, with no clear evidence of additional gain of concurrent tDCS.