Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(10): 3583-3595, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36018343

RESUMO

KEY MESSAGE: We found two loci on chromosomes 2BS and 6AL that significantly contribute to stripe rust resistance in current European winter wheat germplasm. Stripe or yellow rust, caused by the fungus Puccinia striiformis Westend f. sp. tritici, is one of the most destructive wheat diseases. Sustainable management of wheat stripe rust can be achieved through the deployment of rust resistant cultivars. To detect effective resistance loci for use in breeding programs, an association mapping panel of 230 winter wheat cultivars and breeding lines from Northern and Central Europe was employed. Genotyping with the Illumina® iSelect® 25 K Infinium® single nucleotide polymorphism (SNP) genotyping array yielded 8812 polymorphic markers. Structure analysis revealed two subpopulations with 92 Austrian breeding lines and cultivars, which were separated from the other 138 genotypes from Germany, Norway, Sweden, Denmark, Poland, and Switzerland. Genome-wide association study for adult plant stripe rust resistance identified 12 SNP markers on six wheat chromosomes which showed consistent effects over several testing environments. Among these, two marker loci on chromosomes 2BS (RAC875_c1226_652) and 6AL (Tdurum_contig29607_413) were highly predictive in three independent validation populations of 1065, 1001, and 175 breeding lines. Lines with the resistant haplotype at both loci were nearly free of stipe rust symptoms. By using mixed linear models with those markers as fixed effects, we could increase predictive ability in the three populations by 0.13-0.46 compared to a standard genomic best linear unbiased prediction approach. The obtained results facilitate an efficient selection for stripe rust resistance against the current pathogen population in the Northern and Central European winter wheat gene pool.


Assuntos
Basidiomycota , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Genômica , Desequilíbrio de Ligação , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologia
2.
Theor Appl Genet ; 135(2): 405-419, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807267

RESUMO

KEY MESSAGE: New forms of the coefficient of determination can help to forecast the accuracy of genomic prediction and optimize experimental designs in multi-environment trials with genotype-by-environment interactions. In multi-environment trials, the relative performance of genotypes may vary depending on the environmental conditions, and this phenomenon is commonly referred to as genotype-by-environment interaction (G[Formula: see text]E). With genomic prediction, G[Formula: see text]E can be accounted for by modeling the genetic covariance between trials, even when the overall experimental design is highly unbalanced between trials, thanks to the genomic relationship between genotypes. In this study, we propose new forms of the coefficient of determination (CD, i.e., the expected model-based square correlation between a genetic value and its corresponding prediction) that can be used to forecast the genomic prediction reliability of genotypes, both for their trial-specific performance and their mean performance. As the expected prediction reliability based on these new CD criteria is generally a good approximation of the observed reliability, we demonstrate that they can be used to optimize multi-environment trials in the presence of G[Formula: see text]E. In addition, this reliability may be highly variable between genotypes, especially in unbalanced designs with complex pedigree relationships between genotypes. Therefore, it can be useful for breeders to assess it before selecting genotypes based on their predicted genetic values. Using a wheat population evaluated both for simulated and phenology traits, and two maize populations evaluated for grain yield, we illustrate this approach and confirm the value of our new CD criteria.


Assuntos
Melhoramento Vegetal , Projetos de Pesquisa , Genômica , Genótipo , Modelos Genéticos , Fenótipo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA