Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(2): e10873, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314311

RESUMO

Phylogenetic trees illustrate evolutionary relationships between taxa or genes. Tree figures are crucial when presenting results and data, and by creating clear and effective plots, researchers can describe many kinds of evolutionary patterns. However, producing tree plots can be a time-consuming task, especially as multiple different programs are often needed to adjust and illustrate all data associated with a tree. We present TreeViewer, a new software to draw phylogenetic trees. TreeViewer is flexible, modular, and user-friendly. Plots are produced as the result of a user-defined pipeline, which can be finely customised and easily applied to different trees. Every feature of the program is documented and easily accessible, either in the online manual or within the program's interface. We show how TreeViewer can be used to produce publication-ready figures, saving time by not requiring additional graphical post-processing tools. TreeViewer is freely available for Windows, macOS, and Linux operating systems and distributed under an AGPLv3 licence from https://treeviewer.org. It has a graphical user interface (GUI), as well as a command-line interface, which is useful to work with very large trees and for automated pipelines. A detailed user manual with examples and tutorials is also available. TreeViewer is mainly aimed at users wishing to produce highly customised, publication-quality tree figures using a single GUI software tool. Compared to other GUI tools, TreeViewer offers a richer feature set and a finer degree of customisation. Compared to command-line-based tools and software libraries, TreeViewer's graphical interface is more accessible. The flexibility of TreeViewer's approach to phylogenetic tree plotting enables the program to produce a wide variety of publication-ready figures. Users are encouraged to create their own custom modules to expand the functionalities of the program. This sets the scene for an ever-expanding and ever-adapting software framework that can easily adjust to respond to new challenges.

2.
ISME Commun ; 3(1): 131, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082111

RESUMO

Sea ice habitats harbour seasonally abundant microalgal communities, which can be highly productive in the spring when the availability of light increases. An active, bloom-associated prokaryotic community relies on these microalgae for their organic carbon requirements, however an analysis of the encoded metabolic pathways within them is lacking. Hence, our understanding of biogeochemical cycling within sea ice remains incomplete. Here, we generated metagenomic assembled genomes from the bottom of first-year sea ice in northwestern Hudson Bay, during a spring diatom bloom. We show that the prokaryotic community had the metabolic potential to degrade algal derived dimethylsulphoniopropionate and oxidise sulfur. Facultative anaerobic metabolisms, specifically, dissimilatory nitrate reduction and denitrification were also prevalent here, suggesting some sea ice prokaryotes are metabolically capable of adapting to fluctuating oxygen levels during algal bloom conditions. Such denitrification could be an important loss of fixed-N2 in the changing Arctic marine system.

3.
J Genomics ; 11: 26-36, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152813

RESUMO

Picocyanobacteria are essential primary producers in freshwaters yet little is known about their genomic diversity and ecological niches. We report here five draft genomes of freshwater picocyanobacteria: Synechococcus sp. CCAP1479/9, Synechococcus sp. CCAP1479/10, and Synechococcus sp. CCAP1479/13 isolated from Lake Windermere in the Lake District, UK; and Synechococcus sp. CCY0621 and Synechococcus sp. CCY9618 isolated from lakes in The Netherlands. Phylogenetic analysis reveals all five strains belonging to sub-cluster 5.2 of the Synechococcus and Prochlorococcus clade of Cyanobacteria. These five strains are divergent from Synechococcus elongatus, an often-used model for freshwater Synechococcus. Functional annotation revealed significant differences in the number of genes involved in the transport and metabolism of several macro-molecules between freshwater picocyanobacteria from sub-cluster 5.2 and Synechococcus elongatus, including amino acids, lipids, and carbohydrates. Comparative genomic analysis identified further differences in the presence of photosynthesis-associated proteins while gene neighbourhood comparisons revealed alternative structures of the nitrate assimilation operon nirA.

4.
Geobiology ; 20(6): 776-789, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35906866

RESUMO

Cyanobacteria oxygenated Earth's atmosphere ~2.4 billion years ago, during the Great Oxygenation Event (GOE), through oxygenic photosynthesis. Their high iron requirement was presumably met by high levels of Fe(II) in the anoxic Archean environment. We found that many deeply branching Cyanobacteria, including two Gloeobacter and four Pseudanabaena spp., cannot synthesize the Fe(II) specific transporter, FeoB. Phylogenetic and relaxed molecular clock analyses find evidence that FeoB and the Fe(III) transporters, cFTR1 and FutB, were present in Proterozoic, but not earlier Archaean lineages of Cyanobacteria. Furthermore Pseudanabaena sp. PCC7367, an early diverging marine, benthic strain grown under simulated Archean conditions, constitutively expressed cftr1, even after the addition of Fe(II). Our genetic profiling suggests that, prior to the GOE, ancestral Cyanobacteria may have utilized alternative metal iron transporters such as ZIP, NRAMP, or FicI, and possibly also scavenged exogenous siderophore bound Fe(III), as they only acquired the necessary Fe(II) and Fe(III) transporters during the Proterozoic. Given that Cyanobacteria arose 3.3-3.6 billion years ago, it is possible that limitations in iron uptake may have contributed to the delay in their expansion during the Archean, and hence the oxygenation of the early Earth.


Assuntos
Cianobactérias , Ferro , Cianobactérias/genética , Cianobactérias/metabolismo , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo , Fotossíntese , Filogenia , Sideróforos
5.
Trends Microbiol ; 30(2): 143-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34229911

RESUMO

Cyanobacteria are the only prokaryotes to have evolved oxygenic photosynthesis, transforming the biology and chemistry of our planet. Genomic and evolutionary studies have revolutionized our understanding of early oxygenic phototrophs, complementing and dramatically extending inferences from the geologic record. Molecular clock estimates point to a Paleoarchean origin (3.6-3.2 billion years ago, bya) of the core proteins of Photosystem II (PSII) involved in oxygenic photosynthesis and a Mesoarchean origin (3.2-2.8 bya) for the last common ancestor of modern cyanobacteria. Nonetheless, most extant cyanobacteria diversified after the Great Oxidation Event (GOE), an environmental watershed ca. 2.45 bya made possible by oxygenic photosynthesis. Throughout their evolutionary history, cyanobacteria have played a key role in the global carbon cycle.


Assuntos
Cianobactérias , Evolução Biológica , Cianobactérias/genética , Cianobactérias/metabolismo , Oxirredução , Oxigênio/metabolismo , Fotossíntese/genética
6.
Ambio ; 51(2): 318-332, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34822116

RESUMO

Sea ice continues to decline across many regions of the Arctic, with remaining ice becoming increasingly younger and more dynamic. These changes alter the habitats of microbial life that live within the sea ice, which support healthy functioning of the marine ecosystem and provision of resources for human-consumption, in addition to influencing biogeochemical cycles (e.g. air-sea CO2 exchange). With the susceptibility of sea ice ecosystems to climate change, there is a pressing need to fill knowledge gaps surrounding sea ice habitats and their microbial communities. Of fundamental importance to this goal is the development of new methodologies that permit effective study of them. Based on outcomes from the DiatomARCTIC project, this paper integrates existing knowledge with case studies to provide insight on how to best document sea ice microbial communities, which contributes to the sustainable use and protection of Arctic marine and coastal ecosystems in a time of environmental change.


Assuntos
Camada de Gelo , Microbiota , Regiões Árticas , Mudança Climática , Ecossistema , Camada de Gelo/microbiologia
7.
Nat Commun ; 12(1): 4742, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362891

RESUMO

The ancestors of cyanobacteria generated Earth's first biogenic molecular oxygen, but how they dealt with oxidative stress remains unconstrained. Here we investigate when superoxide dismutase enzymes (SODs) capable of removing superoxide free radicals evolved and estimate when Cyanobacteria originated. Our Bayesian molecular clocks, calibrated with microfossils, predict that stem Cyanobacteria arose 3300-3600 million years ago. Shortly afterwards, we find phylogenetic evidence that ancestral cyanobacteria used SODs with copper and zinc cofactors (CuZnSOD) during the Archaean. By the Paleoproterozoic, they became genetically capable of using iron, nickel, and manganese as cofactors (FeSOD, NiSOD, and MnSOD respectively). The evolution of NiSOD is particularly intriguing because it corresponds with cyanobacteria's invasion of the open ocean. Our analyses of metalloenzymes dealing with reactive oxygen species (ROS) now demonstrate that marine geochemical records alone may not predict patterns of metal usage by phototrophs from freshwater and terrestrial habitats.


Assuntos
Antioxidantes/metabolismo , Cianobactérias/enzimologia , Cianobactérias/metabolismo , Evolução Molecular , Teorema de Bayes , Coenzimas , Cobre , Cianobactérias/genética , Água Doce , Ferro , Manganês , Níquel/química , Estresse Oxidativo , Filogenia , Espécies Reativas de Oxigênio , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxidos , Zinco
8.
J Genomics ; 9: 20-25, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613774

RESUMO

Brackish cyanobacterial genome sequences are relatively rare. Here, we report the 5.5 Mbp, 5.8 Mbp and 6.1 Mbp draft genomes of Spirulina sp. CCY15215, Leptolyngbya sp. CCY15150 and Halomicronema sp. CCY15110 isolated from coastal microbial mats on the North Sea beach of the island of Schiermonnikoog in the Netherlands. Large scale phylogenomic analyses reveal that Spirulina sp. CCY15215 is a large cell diameter cyanobacterium, whereas Leptolyngbya sp. CCY15150 and Halomicronema sp. CCY15110 are the first reported brackish genomes belonging to the LPP clade consisting primarily of Leptolyngbya, Plectonema and Phormidium spp. Further genome mining divulges that all new draft genomes contain, ggpS and ggpP , the genes responsible for synthesising glucosylglycerol (GG), a compatible solute found in moderately salt-tolerant cyanobacteria.

9.
Biochim Biophys Acta Bioenerg ; 1862(6): 148400, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33617856

RESUMO

Oxygenic photosynthesis starts with the oxidation of water to O2, a light-driven reaction catalysed by photosystem II. Cyanobacteria are the only prokaryotes capable of water oxidation and therefore, it is assumed that the origin of oxygenic photosynthesis is a late innovation relative to the origin of life and bioenergetics. However, when exactly water oxidation originated remains an unanswered question. Here we use phylogenetic analysis to study a gene duplication event that is unique to photosystem II: the duplication that led to the evolution of the core antenna subunits CP43 and CP47. We compare the changes in the rates of evolution of this duplication with those of some of the oldest well-described events in the history of life: namely, the duplication leading to the Alpha and Beta subunits of the catalytic head of ATP synthase, and the divergence of archaeal and bacterial RNA polymerases and ribosomes. We also compare it with more recent events such as the duplication of Cyanobacteria-specific FtsH metalloprotease subunits and the radiation leading to Margulisbacteria, Sericytochromatia, Vampirovibrionia, and other clades containing anoxygenic phototrophs. We demonstrate that the ancestral core duplication of photosystem II exhibits patterns in the rates of protein evolution through geological time that are nearly identical to those of the ATP synthase, RNA polymerase, or the ribosome. Furthermore, we use ancestral sequence reconstruction in combination with comparative structural biology of photosystem subunits, to provide additional evidence supporting the premise that water oxidation had originated before the ancestral core duplications. Our work suggests that photosynthetic water oxidation originated closer to the origin of life and bioenergetics than can be documented based on phylogenetic or phylogenomic species trees alone.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/metabolismo , Evolução Molecular , Oxigênio/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Oxirredução , Filogenia
10.
J Bacteriol ; 202(12)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32253342

RESUMO

Multicellularity in Cyanobacteria played a key role in their habitat expansion, contributing to the Great Oxidation Event around 2.45 billion to 2.32 billion years ago. Evolutionary studies have indicated that some unicellular cyanobacteria emerged from multicellular ancestors, yet little is known about how the emergence of new unicellular morphotypes from multicellular ancestors occurred. Our results give new insights into the evolutionary reversion from which the Gloeocapsopsis lineage emerged. Flow cytometry and microscopy results revealed morphological plasticity involving the patterned formation of multicellular morphotypes sensitive to environmental stimuli. Genomic analyses unveiled the presence of multicellularity-associated genes in its genome. Calcein-fluorescence recovery after photobleaching (FRAP) experiments confirmed that Gloeocapsopsis sp. strain UTEX B3054 carries out cell-to-cell communication in multicellular morphotypes but at slower time scales than filamentous cyanobacteria. Although traditionally classified as unicellular, our results suggest that Gloeocapsopsis displays facultative multicellularity, a condition that may have conferred ecological advantages for thriving as an extremophile for more than 1.6 billion years.IMPORTANCECyanobacteria are among the few prokaryotes that evolved multicellularity. The early emergence of multicellularity in Cyanobacteria (2.5 billion years ago) entails that some unicellular cyanobacteria reverted from multicellular ancestors. We tested this evolutionary hypothesis by studying the unicellular strain Gloeocapsopsis sp. UTEX B3054 using flow cytometry, genomics, and cell-to-cell communication experiments. We demonstrate the existence of a well-defined patterned organization of cells in clusters during growth, which might change triggered by environmental stimuli. Moreover, we found genomic signatures of multicellularity in the Gloeocapsopsis genome, giving new insights into the evolutionary history of a cyanobacterial lineage that has thrived in extreme environments since the early Earth. The potential benefits in terms of resource acquisition and the ecological relevance of this transient behavior are discussed.


Assuntos
Evolução Biológica , Cianobactérias/genética , Extremófilos/genética , Cianobactérias/classificação , Cianobactérias/fisiologia , Ecossistema , Extremófilos/classificação , Extremófilos/fisiologia , Genoma Bacteriano , Genômica , Filogenia
11.
New Phytol ; 225(4): 1440-1446, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31598981

RESUMO

Oxygenic phototrophs have played a fundamental role in Earth's history by enabling the rise of atmospheric oxygen (O2 ) and paving the way for animal evolution. Understanding the origins of oxygenic photosynthesis and Cyanobacteria is key when piecing together the events around Earth's oxygenation. It is likely that photosynthesis evolved within bacterial lineages that are not extant, so it can be challenging when studying the early history of photosynthesis. Recent genomic and molecular evolution studies have transformed our understanding about the evolution of photosynthetic reaction centres and the evolution of Cyanobacteria. The evidence reviewed here highlights some of the most recent advances on the origin of photosynthesis both at the genomic and gene family levels.


Assuntos
Evolução Biológica , Cianobactérias/genética , Cianobactérias/fisiologia , Oxigênio/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Conformação Proteica
12.
Free Radic Biol Med ; 140: 154-166, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31323314

RESUMO

Iron is the most abundant redox active metal on Earth and thus provides one of the most important records of the redox state of Earth's ancient atmosphere, oceans and landmasses over geological time. The most dramatic shifts in the Earth's iron cycle occurred during the oxidation of Earth's atmosphere. However, tracking the spatial and temporal development of the iron cycle is complicated by uncertainties about both the timing and location of the evolution of oxygenic photosynthesis, and by the myriad of microbial processes that act to cycle iron between redox states. In this review, we piece together the geological evidence to assess where and when oxygenic photosynthesis likely evolved, and attempt to evaluate the influence of this innovation on the microbial iron cycle.


Assuntos
Planeta Terra , Ferro/metabolismo , Oxigênio/metabolismo , Fotossíntese , Atmosfera/química , Evolução Biológica , Cianobactérias/metabolismo , Ferro/química , Oxirredução , Oxigênio/química
13.
Front Microbiol ; 10: 45, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761097

RESUMO

Marine picocyanobacteria, Prochlorococcus and Synechococcus, substantially contribute to marine primary production and have been the subject of extensive ecological and genomic studies. Little is known about their close relatives from freshwater and non-marine environments. Phylogenomic analyses (using 136 proteins) provide strong support for the monophyly of a clade of non-marine picocyanobacteria consisting of Cyanobium, Synechococcus and marine Sub-cluster 5.2; this clade itself is sister to marine Synechococcus and Prochlorococcus. The most basal lineage within the Syn/Pro clade, Sub-Cluster 5.3, includes marine and freshwater strains. Relaxed molecular clock (SSU, LSU) analyses show that while ancestors of the Syn/Pro clade date as far back as the end of the Pre-Cambrian, modern crown groups evolved during the Carboniferous and Triassic. Comparative genomic analyses reveal novel gene cluster arrangements involved in phycobilisome (PBS) metabolism in freshwater strains. Whilst PBS genes in marine Synechococcus are mostly found in one type of phycoerythrin (PE) rich gene cluster (Type III), strains from non-marine habitats, so far, appear to be more diverse both in terms of pigment content and gene arrangement, likely reflecting a wider range of habitats. Our phylogenetic analyses show that the PE genes (mpeBA) evolved via a duplication of the cpeBA genes in an ancestor of the marine and non-marine picocyanobacteria and of the symbiotic strains Synechococcus spongiarum. A 'primitive' Type III-like ancestor containing cpeBA and mpeBA had thus evolved prior to the divergence of the Syn/Pro clade and S. spongiarum. During the diversification of Synechococcus lineages, losses of mpeBA genes may explain the emergence of pigment cluster Types I, II, IIB, and III in both marine and non-marine habitats, with few lateral gene transfer events in specific taxa.

14.
Geobiology ; 17(2): 127-150, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30411862

RESUMO

Photosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here, we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, we hypothesize that this early Archean photosystem was capable of water oxidation to oxygen and had already evolved protection mechanisms against the formation of reactive oxygen species. This would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.


Assuntos
Proteínas de Bactérias/análise , Cianobactérias/genética , Evolução Molecular , Complexo de Proteína do Fotossistema II/análise , Teorema de Bayes , Cianobactérias/fisiologia , Fotossíntese , Filogenia
15.
Mol Ecol ; 27(24): 5279-5293, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30565777

RESUMO

Cyanobacteria are important photoautotrophs in extreme environments such as the McMurdo Dry Valleys, Antarctica. Terrestrial Antarctic cyanobacteria experience constant darkness during the winter and constant light during the summer which influences the ability of these organisms to fix carbon over the course of an annual cycle. Here, we present a unique approach combining community structure, genomic and photophysiological analyses to understand adaptation to Antarctic light regimes in the cyanobacterium Leptolyngbya sp. BC1307. We show that Leptolyngbya sp. BC1307 belongs to a clade of cyanobacteria that inhabits near-surface environments in the McMurdo Dry Valleys. Genomic analyses reveal that, unlike close relatives, Leptolyngbya sp. BC1307 lacks the genes necessary for production of the pigment phycoerythrin and is incapable of complimentary chromatic acclimation, while containing several genes responsible for known photoprotective pigments. Photophysiology experiments confirmed Leptolyngbya sp. BC1307 to be tolerant of short-term exposure to high levels of photosynthetically active radiation, while sustained exposure reduced its capacity for photoprotection. As such, Leptolyngbya sp. BC1307 likely exploits low-light microenvironments within cyanobacterial mats in the McMurdo Dry Valleys.


Assuntos
Cianobactérias/genética , Cianobactérias/fisiologia , Fotossíntese , Filogenia , Adaptação Fisiológica , Regiões Antárticas , Genômica , Luz , Ficoeritrina/genética , Pigmentos Biológicos/genética
16.
FEMS Microbiol Ecol ; 94(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29901729

RESUMO

Microbial nitrogen fixation is crucial for building labile nitrogen stocks and facilitating higher plant colonisation in oligotrophic glacier forefield soils. Here, the diazotrophic bacterial community structure across four Arctic glacier forefields was investigated using metagenomic analysis. In total, 70 soil metagenomes were used for taxonomic interpretation based on 185 nitrogenase (nif) sequences, extracted from assembled contigs. The low number of recovered genes highlights the need for deeper sequencing in some diverse samples, to uncover the complete microbial populations. A key group of forefield diazotrophs, found throughout the forefields, was identified using a nifH phylogeny, associated with nifH Cluster I and III. Sequences related most closely to groups including Alphaproteobacteria, Betaproteobacteria, Cyanobacteria and Firmicutes. Using multiple nif genes in a Last Common Ancestor analysis revealed a diverse range of diazotrophs across the forefields. Key organisms identified across the forefields included Nostoc, Geobacter, Polaromonas and Frankia. Nitrogen fixers that are symbiotic with plants were also identified, through the presence of root associated diazotrophs, which fix nitrogen in return for reduced carbon. Additional nitrogen fixers identified in forefield soils were metabolically diverse, including fermentative and sulphur cycling bacteria, halophiles and anaerobes.


Assuntos
Alphaproteobacteria/metabolismo , Betaproteobacteria/metabolismo , Cianobactérias/metabolismo , Firmicutes/metabolismo , Camada de Gelo/microbiologia , Fixação de Nitrogênio/fisiologia , Alphaproteobacteria/classificação , Alphaproteobacteria/genética , Regiões Árticas , Betaproteobacteria/classificação , Betaproteobacteria/genética , Carbono/metabolismo , Cianobactérias/classificação , Cianobactérias/genética , Firmicutes/classificação , Firmicutes/genética , Metagenômica , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Filogenia , Solo/química , Microbiologia do Solo
17.
BMC Genomics ; 19(1): 259, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661139

RESUMO

BACKGROUND: Many cyanobacteria are capable of fixing atmospheric nitrogen, playing a crucial role in biogeochemical cycling. Little is known about freshwater unicellular cyanobacteria Synechococcus spp. at the genomic level, despite being recognised of considerable ecological importance in aquatic ecosystems. So far, it has not been shown whether these unicellular picocyanobacteria have the potential for nitrogen fixation. Here, we present the draft-genome of the new pink-pigmented Synechococcus-like strain Vulcanococcus limneticus. sp. nov., isolated from the volcanic Lake Albano (Central Italy). RESULTS: The novel species Vulcanococcus limneticus sp. nov. falls inside the sub-cluster 5.2, close to the estuarine/marine strains in a maximum-likelihood phylogenetic tree generated with 259 marker genes with representatives from marine, brackish, euryhaline and freshwater habitats. V.limneticus sp. nov. possesses a complete nitrogenase and nif operon. In an experimental setup under nitrogen limiting and non-limiting conditions, growth was observed in both cases. However, the nitrogenase genes (nifHDK) were not transcribed, i.e., V.limneticus sp. nov. did not fix nitrogen, but instead degraded the phycobilisomes to produce sufficient amounts of ammonia. Moreover, the strain encoded many other pathways to incorporate ammonia, nitrate and sulphate, which are energetically less expensive for the cell than fixing nitrogen. The association of the nif operon to a genomic island, the relatively high amount of mobile genetic elements (52 transposases) and the lower observed GC content of V.limneticus sp. nov. nif operon (60.54%) compared to the average of the strain (68.35%) support the theory that this planktonic strain may have obtained, at some point of its evolution, the nif operon by horizontal gene transfer (HGT) from a filamentous or heterocystous cyanobacterium. CONCLUSIONS: In this study, we describe the novel species Vulcanococcus limneticus sp. nov., which possesses a complete nif operon for nitrogen fixation. The finding that in our experimental conditions V.limneticus sp. nov. did not express the nifHDK genes led us to reconsider the actual ecological meaning of these accessory genes located in genomic island that have possibly been acquired via HGT.


Assuntos
Cianobactérias/genética , Transferência Genética Horizontal , Nitrogênio/metabolismo , Nitrogenase/genética , Óperon , Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Cianobactérias/metabolismo , Genoma Bacteriano , Lagos/microbiologia , Fenótipo , Filogenia , Plâncton/genética , Plâncton/isolamento & purificação
18.
FEMS Microbiol Ecol ; 94(4)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29506259

RESUMO

In recent years, genomic analyses have arisen as an exciting way of investigating the functional capacity and environmental adaptations of numerous micro-organisms of global relevance, including cyanobacteria. In the extreme cold of Arctic, Antarctic and alpine environments, cyanobacteria are of fundamental ecological importance as primary producers and ecosystem engineers. While their role in biogeochemical cycles is well appreciated, little is known about the genomic makeup of polar and alpine cyanobacteria. In this article, we present ways that genomic techniques might be used to further our understanding of cyanobacteria in cold environments in terms of their evolution and ecology. Existing examples from other environments (e.g. marine/hot springs) are used to discuss how methods developed there might be used to investigate specific questions in the cryosphere. Phylogenomics, comparative genomics and population genomics are identified as methods for understanding the evolution and biogeography of polar and alpine cyanobacteria. Transcriptomics will allow us to investigate gene expression under extreme environmental conditions, and metagenomics can be used to complement tradition amplicon-based methods of community profiling. Finally, new techniques such as single cell genomics and metagenome assembled genomes will also help to expand our understanding of polar and alpine cyanobacteria that cannot readily be cultured.


Assuntos
Aclimatação/genética , Cianobactérias/genética , Genômica/métodos , Metagenoma/genética , Regiões Antárticas , Regiões Árticas , Ecologia , Ecossistema , Filogenia , Estresse Fisiológico/genética
20.
Proc Natl Acad Sci U S A ; 114(37): E7737-E7745, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28808007

RESUMO

The early evolutionary history of the chloroplast lineage remains an open question. It is widely accepted that the endosymbiosis that established the chloroplast lineage in eukaryotes can be traced back to a single event, in which a cyanobacterium was incorporated into a protistan host. It is still unclear, however, which Cyanobacteria are most closely related to the chloroplast, when the plastid lineage first evolved, and in what habitats this endosymbiotic event occurred. We present phylogenomic and molecular clock analyses, including data from cyanobacterial and chloroplast genomes using a Bayesian approach, with the aim of estimating the age for the primary endosymbiotic event, the ages of crown groups for photosynthetic eukaryotes, and the independent incorporation of a cyanobacterial endosymbiont by Paulinella Our analyses include both broad taxon sampling (119 taxa) and 18 fossil calibrations across all Cyanobacteria and photosynthetic eukaryotes. Phylogenomic analyses support the hypothesis that the chloroplast lineage diverged from its closet relative Gloeomargarita, a basal cyanobacterial lineage, ∼2.1 billion y ago (Bya). Our analyses suggest that the Archaeplastida, consisting of glaucophytes, red algae, green algae, and land plants, share a common ancestor that lived ∼1.9 Bya. Whereas crown group Rhodophyta evolved in the Mesoproterozoic Era (1,600-1,000 Mya), crown groups Chlorophyta and Streptophyta began to radiate early in the Neoproterozoic (1,000-542 Mya). Stochastic mapping analyses indicate that the first endosymbiotic event occurred in low-salinity environments. Both red and green algae colonized marine environments early in their histories, with prasinophyte green phytoplankton diversifying 850-650 Mya.


Assuntos
Cloroplastos/metabolismo , Cloroplastos/fisiologia , Cianobactérias/genética , Cianobactérias/metabolismo , Teorema de Bayes , Evolução Biológica , Clorófitas/genética , Ecossistema , Eucariotos/metabolismo , Evolução Molecular , Genoma de Cloroplastos/genética , Origem da Vida , Fotossíntese/fisiologia , Filogenia , Fitoplâncton/genética , Plastídeos/genética , Rodófitas/genética , Salinidade , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA