Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6686): 992-998, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422143

RESUMO

Touch perception is enabled by mechanically activated ion channels, the opening of which excites cutaneous sensory endings to initiate sensation. In this study, we identify ELKIN1 as an ion channel likely gated by mechanical force, necessary for normal touch sensitivity in mice. Touch insensitivity in Elkin1-/- mice was caused by a loss of mechanically activated currents (MA currents) in around half of all sensory neurons activated by light touch (low-threshold mechanoreceptors). Reintroduction of Elkin1 into sensory neurons from Elkin1-/- mice restored MA currents. Additionally, small interfering RNA-mediated knockdown of ELKIN1 from induced human sensory neurons substantially reduced indentation-induced MA currents, supporting a conserved role for ELKIN1 in human touch. Our data identify ELKIN1 as a core component of touch transduction in mice and potentially in humans.


Assuntos
Canais Iônicos , Mecanorreceptores , Mecanotransdução Celular , Proteínas de Membrana , Células Receptoras Sensoriais , Percepção do Tato , Animais , Humanos , Camundongos , Células HEK293 , Canais Iônicos/genética , Canais Iônicos/fisiologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , RNA Interferente Pequeno , Tato , Camundongos Mutantes , Masculino , Feminino
2.
Elife ; 92020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32228863

RESUMO

Mechanoelectrical transduction is a cellular signalling pathway where physical stimuli are converted into electro-chemical signals by mechanically activated ion channels. We describe here the presence of mechanically activated currents in melanoma cells that are dependent on TMEM87a, which we have renamed Elkin1. Heterologous expression of this protein in PIEZO1-deficient cells, that exhibit no baseline mechanosensitivity, is sufficient to reconstitute mechanically activated currents. Melanoma cells lacking functional Elkin1 exhibit defective mechanoelectrical transduction, decreased motility and increased dissociation from organotypic spheroids. By analysing cell adhesion properties, we demonstrate that Elkin1 deletion is associated with increased cell-substrate adhesion and decreased homotypic cell-cell adhesion strength. We therefore conclude that Elkin1 supports a PIEZO1-independent mechanoelectrical transduction pathway and modulates cellular adhesions and regulates melanoma cell migration and cell-cell interactions.


When cells receive signals about their surrounding environment, this initiates a chain of signals which generate a response. Some of these signalling pathways allow cells to sense physical and mechanical forces via a process called mechanotransduction. There are different types of mechanotransduction. In one pathway, mechanical forces open up specialized channels on the cell surface which allow charged particles to move across the membrane and create an electrical current. Mechanoelectrical transduction plays an important role in the spread of cancer: as cancer cells move away from a tumour they use these signalling pathways to find their way between cells and move into other parts of the body. Understanding these pathways could reveal ways to stop cancer from spreading, making it easier to treat. However, it remains unclear which molecules regulate mechanoelectrical transduction in cancer cells. Now, Patkunarajah, Stear et al. have studied whether mechanoelectrical transduction is involved in the migration of skin cancer cells. To study mechanoelectrical transduction, a fine mechanical input was applied to the skin cancer cells whilst measuring the flow of charged molecules moving across the membrane. This experiment revealed that a previously unknown protein named Elkin1 is required to convert mechanical forces into electrical currents. Deleting this newly found protein caused skin cancer cells to move more slowly and dissociate more easily from tumour-like clusters of cells. These findings suggest that Elkin1 is part of a newly identified mechanotransduction pathway that allows cells to sense mechanical forces from their surrounding environment. More work is needed to determine what role Elkin1 plays in mechanoelectrical transduction and whether other proteins are also involved. This could lead to new approaches that prevent cancer cells from dissociating from tumours and spreading to other body parts.


Assuntos
Mecanotransdução Celular/fisiologia , Melanoma/patologia , Proteínas de Membrana/fisiologia , Adesão Celular , Comunicação Celular , Linhagem Celular Tumoral , Movimento Celular , Humanos , Canais Iônicos/fisiologia , Esferoides Celulares
3.
Science ; 364(6443): 852-859, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31147513

RESUMO

Noxious substances, called algogens, cause pain and are used as defensive weapons by plants and stinging insects. We identified four previously unknown instances of algogen-insensitivity by screening eight African rodent species related to the naked mole-rat with the painful substances capsaicin, acid (hydrogen chloride, pH 3.5), and allyl isothiocyanate (AITC). Using RNA sequencing, we traced the emergence of sequence variants in transduction channels, like transient receptor potential channel TRPA1 and voltage-gated sodium channel Nav1.7, that accompany algogen insensitivity. In addition, the AITC-insensitive highveld mole-rat exhibited overexpression of the leak channel NALCN (sodium leak channel, nonselective), ablating AITC detection by nociceptors. These molecular changes likely rendered highveld mole-rats immune to the stings of the Natal droptail ant. Our study reveals how evolution can be used as a discovery tool to find molecular mechanisms that shut down pain.


Assuntos
Evolução Molecular , Ratos-Toupeira/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Dor Nociceptiva/genética , Limiar da Dor , Canal de Cátion TRPA1/genética , Animais , Sítios de Ligação , Capsaicina/farmacologia , Ácido Clorídrico/farmacologia , Mordeduras e Picadas de Insetos/genética , Mordeduras e Picadas de Insetos/imunologia , Isotiocianatos/farmacologia , Ratos-Toupeira/genética , Ratos-Toupeira/imunologia , Dor Nociceptiva/induzido quimicamente , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Conformação Proteica , Análise de Sequência de RNA , Especificidade da Espécie , Canal de Cátion TRPA1/química
4.
Nat Commun ; 9(1): 1096, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545531

RESUMO

Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts.


Assuntos
Proteínas de Drosophila/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Evolução Molecular , Humanos , Canais Iônicos/genética , Camundongos , Mutação de Sentido Incorreto , Técnicas de Patch-Clamp , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
Biochem Biophys Res Commun ; 466(3): 554-9, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26381170

RESUMO

Slo3 channels (mSlo3) primarily mediate mouse sperm K(+) currents and are essential for the capacitation-associated hyperpolarization (CAH). Whether Slo3 and/or Slo1, two Slo family K(+) channels are functionally expressed in human sperm is controversial. Our recent pharmacological studies of the human sperm CAH suggested the participation of both. Lack of a detailed pharmacology of heterologously expressed human Slo3 (hSlo3) prevented precisely identifying the K(+) channel(s) involved. In the present report, we compare the pharmacological profile of expressed hSlo3 in CHO cells with that of the CAH to advance this matter. Whole-cell patch-clamp recordings showed that hSlo3 currents are inhibited: significantly by progesterone, Ba(2+) and quinidine; partially by Penitrem A and Charybdotoxin; and poorly by Iberiotoxin and Slotoxin. Surprisingly, hSlo3 currents were resistant to Clofilium and 60 mM TEA(+) which inhibit mSlo3. Pharmacological comparison of the CAH and hSlo3 profiles indicates in addition to hSlo3, other K(+) channels, possibly Slo1, may participate in CAH. The pharmacological profile of heterologously expressed hSlo3 channels differs from that of mSlo3 K(+) channels, consistent with species-specific differences observed among other sperm ion channels. While the pharmacological correlation analysis of the hSlo3 currents and the CAH confirmed the participation of hSlo3 channels, it suggests that additional K(+) channels may be involved, in particular Slo1 channels.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Animais , Células CHO , Cricetulus , Humanos , Técnicas In Vitro , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Potenciais da Membrana , Camundongos , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/antagonistas & inibidores , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA