Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Plants (Basel) ; 12(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36987025

RESUMO

Heavy metal pollution is a worldwide environmental and human health problem. Prosopis laevigata is a hyperaccumulator legume that bioaccumulates Pb, Cu and Zn. With interest in designing phytoremediation strategies for sites contaminated with heavy metals, we isolated and characterized endophytic fungi from the roots of P. laevigata growing on mine tailings located in Morelos, Mexico. Ten endophytic isolates were selected by morphological discrimination and a preliminary minimum inhibitory concentration was determined for zinc, lead and copper. A novel strain of Aspergillus closest to Aspergillus luchuensis was determined to be a metallophile and presented a marked tolerance to high concentrations of Cu, Zn and Pb, so it was further investigated for removal of metals and promotion of plant growth under greenhouse conditions. The control substrate with fungi promoted larger size characters in P. laevigata individuals in comparison with the other treatments, demonstrating that A. luchuensis strain C7 is a growth-promoting agent for P. laevigata individuals. The fungus favors the translocation of metals from roots to leaves in P. laevigata, promoting an increased Cu translocation. This new A. luchuensis strain showed endophytic character and plant growth-promotion activity, high metal tolerance, and an ability to increase copper translocation. We propose it as a novel, effective and sustainable bioremediation strategy for copper-polluted soils.

2.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432865

RESUMO

In the present study, the nematicidal and acaricidal activity of three Enterobacter endophytic strains isolated from Mimosa pudica nodules was evaluated. The percentages of mortality of Enterobacter NOD4 against Panagrellus redivivus was 81.2%, and against Nacobbus aberrans 70.1%, Enterobacter NOD8 72.4% and 62.5%, and Enterobacter NOD10 64.8% and 58.7%, respectively. While against the Tyrophagus putrescentiae mite, the mortality percentages were 68.2% due to Enterobacter NOD4, 64.3% due to Enterobacter NOD8 and 77.8% due to Enterobacter NOD10. On the other hand, the ability of the three Enterobacter strains to produce indole acetic acid and phosphate solubilization, characteristics related to plant growth-promoting bacteria, was detected. Bioinformatic analysis of the genomes showed the presence of genes related to IAA production, phosphate solubilization, and nitrogen fixation. Phylogenetic analyzes of the recA gene, phylogenomics, and average nucleotide identity (ANI) allowed us to identify the strain Enterobacter NOD8 related to E. mori and Enterobacter NOD10 as E. asburiae, while Enterobacter NOD4 was identified as a possible new species of this species. The plant growth-promoting, acaricidal and nematicidal activity of the three Enterobacter strains makes them a potential agent to include in biocontrol alternatives and as growth-promoting bacteria in crops of agricultural interest.

3.
Plants (Basel) ; 10(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34579451

RESUMO

Here, we analyzed the effects on Capsicum annuum plants of Trichoderma atroviride P. Karst strains altered in the expression of SWOLLENIN (SWO1), a protein with amorphogenic activity on plant cell wall components. Strains of T. atroviride that overexpressed the Taswo1 gene were constructed as well as deletion mutants. A novel, cheap and accurate method for assessing root colonization was developed. Colonization assays showed that the Taswo1 overexpressing strains invaded the host root better than the WT, resulting in a stronger plant growth-promoting effect. The expression of plant defense marker genes for both the systemic acquired resistance and induced systemic resistance pathways was enhanced in plants inoculated with Taswo1 overexpressing strains, while inoculation with deletion mutant strains resulted in a similar level of expression to that observed upon inoculation with the wild-type strain. Response to pathogen infection was also enhanced in the plants inoculated with the Taswo1 overexpressing strains, and surprisingly, an intermediate level of protection was achieved with the mutant strains. Tolerance to abiotic stresses was also higher in plants inoculated with the Taswo1 overexpressing strains but was similar in plants inoculated with the wild-type or the mutant strains. Compatible osmolyte production in drought conditions was studied. This study may contribute to improving Trichoderma biocontrol and biofertilization abilities.

4.
Acta biol. colomb ; 26(2): 196-206, mayo-ago. 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1355531

RESUMO

ABSTRACT In the present study, 62 endophytic bacterial strains of cedar seeds (Cedrela odorata L.), collected in the municipalities of Huehuetán, Motozintla, and Pijijiapan in the state of Chiapas, Mexico were isolated. The goal was to identify characteristics of biotechnological interest such as biocontrol, promotion ofplant growth, and growth in aromatic compounds. The strains were identified by the partial sequence of the 16S ribosomal gene as belonging to the Bacillus genus. The biocontrol capacity of phytopathogenic fungi, production of indoleacetic acid (IAA), solubilization of phosphate, and growth in xenobiotic compounds (phenanthrene, benzene, anthracene, or phenol) were detected in 26 strains of the 62 isolates. 21 % of the strains inhibited the mycelial growth of Alternaria solani and Fusarium sp., and 13 % of the Phytophthora capsici oomycete. IAA production was detected in 24 isolates, phosphate solubilizing activity was identified in 18 isolates, while the ability to grow in the presence of phenanthrene and benzene was found in 26 isolates; 24 isolates grew in the presence of anthracene and only two isolates grew in phenol as the only carbon sources. This is the first report of the isolation and identification of endophytic bacteria from cedar seeds, where biotechnological characteristics were detected for biological control, promotion of plant growth, and growth in the presence of xenobiotic compounds.


RESUMEN En el presente estudio se aislaron 62 cepas bacterianas endófitas de semillas de cedro (Cedrela odorata L.) colectadas en los municipios de Huehuetán, Motozintla y Pijijiapan en el estado de Chiapas, México, con el objetivo de identificar características de interés biotecnológicas como biocontrol, promoción del crecimiento vegetal y crecimiento en compuestos aromáticos. Las cepas se identificaron por la secuencia parcial del gen 16S ribosomal como pertenecientes al género Bacillus. En 26 cepas de las 62 aisladas se detectaron la capacidad de biocontrol de hongos fitopatógenos, la producción de ácido indolacético (AIA), la solubilización de fosfato y el crecimiento en compuestos xenobióticos (fenantreno, benceno, antraceno o fenol). El 21 % de las cepas inhibió el crecimiento miceliar de Alternaria solani y Fusarium sp., y el 13 % del oomiceto Phytophthora capsici. La producción de ácido indolacético se detectó en 24 aislados y la actividad solubilizadora de fosfato se encontró en 18 aislados, mientras que la capacidad de crecer en presencia de fenantreno y benceno se manifestó en 26 aislados (24 aislados crecieron en presencia de antraceno y solo dos aislados crecieron en fenol como únicas fuentes de carbono). Es importante mencionar que este es el primer reporte del aislamiento e identificación de bacterias endófitas de semillas de cedro, en el que se detectaron características biotecnológicas para el control biológico, la promoción del crecimiento vegetal y el crecimiento en presencia de compuestos xenobióticos.

5.
Arch Microbiol ; 203(2): 549-559, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32980917

RESUMO

In the present study, the nematicidal activity of an isolated strain of Mimosa pudica nodules was evaluated against the Nacobbus aberrans (J2) phytonymatodes with a mortality of 88.8%, while against the gastrointestinal nematode Haemonchus contortus (L3) and free-living Panagrellus redivivus was 100%. The ability to inhibit the growth of phytopathogenic fungi Fusarium sp., and Alternaria solani, as well as the oomycete Phytophthora capsici, this antifungal activity may be related to the ability to produce cellulases, siderophores and chitinases by this bacterial strain. Another important finding was the detection of plant growth promoter characteristics, such as auxin production and phosphate solubilization. The strain identified by sequences of the 16S and rpoB genes as Serratia sp. is genetically related to Serratia marcescens and Serratia nematodiphila. The promoter activity of plant growth, antifungal and nematicide of the Serratia sp. strain makes it an alternative for the biocontrol of fungi and nematodes that affect both the livestock and agricultural sectors, likewise, candidate as a growth-promoting bacterium.


Assuntos
Fungos/efeitos dos fármacos , Mimosa/microbiologia , Nematoides/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Serratia/química , Alternaria/efeitos dos fármacos , Animais , Antifúngicos/farmacologia , Proteínas de Bactérias/genética , Quitinases/metabolismo , Endófitos/química , Endófitos/fisiologia , Fusarium/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Mimosa/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , RNA Ribossômico 16S/genética , Serratia/classificação , Serratia/enzimologia , Serratia/genética , Especificidade da Espécie
6.
Microbiol Res ; 232: 126394, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31865222

RESUMO

Extreme ecosystems are a possible source of new interesting microorganisms, in this study the isolation of psychrophilic and psychrotolerant plant growth promoting microorganisms was pursued in a cold habitat, with the aim of finding novel microbes that can protect crops from cold. Eight yeast and four bacterial strains were isolated from rhizospheric soil collected from the Xinantécatl volcano in Mexico, and characterized for plant growth promoting properties. Most of the yeasts produced indole acetic acid and hydrolytic enzymes (cellulases, xilanases and chitinases), but none of them produced siderophores, in contrast to their bacterial counterparts. Inorganic phosphate solubilization was detected for all the bacterial strains and for two yeast strains. Yeast and bacterial strains may inhibit growth of various pathogenic fungi, propounding a role in biological control. Microorganisms were identified up to genera level, by applying ribotyping techniques and phylogenetic analysis. Bacterial strains belonged to the genus Pseudomonas, whereas yeast strains consisted of Rhodotorula sp. (4), Mrakia sp. (3) and Naganishia sp. (1). New species belonging to the aforementioned genera seem to have been isolated from both bacteria and yeasts. Germination promoting activity on Solanum lycopersicum seeds was detected for all strains compared to a control, whereas tomato plantlets, grown at 15 °C in the presence of some of the strains, performed better than the non-inoculated plantlets. This study offers the possibility of using these strains as an additive to improve culture conditions of S. lycopersicum in a more environmentally compatible way. This is the first study to propose psychrophilic/psychrotolerant yeasts, as plant growth promoting microbes.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Filogenia , Desenvolvimento Vegetal , Leveduras/classificação , Leveduras/isolamento & purificação , Altitude , Temperatura Baixa , DNA/isolamento & purificação , Ecossistema , Fungos/patogenicidade , Germinação , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , México , Doenças das Plantas , Rizosfera , Sementes/crescimento & desenvolvimento , Sideróforos/metabolismo , Microbiologia do Solo , Estresse Fisiológico , Erupções Vulcânicas , Leveduras/fisiologia
7.
Microbiol Res ; 218: 76-86, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30454661

RESUMO

Legumes establish symbiotic relationships with different microorganisms, which could function as plant growth promotion microorganisms (PGPM). The finding of new PGPM strains is important to increase plant production avoiding or diminishing the use of industrial fertilizers. Thus, in this work we evaluated the plant growth promotion traits of ten strains isolated from Mimosa pudica root nodules. According to the 16S rDNA sequence, the microorganisms were identified as Enterobacter sp. and Serratia sp. To the best of our knowledge this is the first report describing and endophytic interaction between Mimosa pudica and Enterobacter sp. These strains have some plant growth promoting traits such as phosphate solubilization, auxin production and cellulase and chitinase activity. Strains identified as Serratia sp. inhibited the growth of the phytopathogenic fungi Fusarium sp., and Alternaria solani and the oomycete Phytophthora capsici. According to their biochemical characteristics, three strains were selected to test their plant growth promoting activity in a medium with an insoluble phosphate source. These bacteria show low specificity for their hosts as endophytes, since they were able to colonize two very different legumes: Phaseolus vulgaris and M. pudica. Seedlings of P. vulgaris were inoculated and grown for fifteen days. Enterobacter sp. NOD1 and NOD10, promoted growth as reflected by an increase in shoot height as well as an increase in the size and emergence of the first two trifolia. We could localize NOD5 as an endophyte in roots in P. vulgaris by transforming the strain with a Green Fluorescent Protein carrying plasmid. Experiments of co-inoculation with different Rhizobium etli strains allowed us to discard that NOD5 can fix nitrogen in the nodules formed by a R. etli Fix- strain. The isolates described in this work show biotechnological potential for plant growth promoting activity and production of indoleacetic acid and siderophores.


Assuntos
Endófitos/metabolismo , Enterobacter/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Mimosa/microbiologia , Phaseolus/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Serratia/isolamento & purificação , Alternaria/crescimento & desenvolvimento , Quitinases/metabolismo , Endófitos/isolamento & purificação , Enterobacter/classificação , Enterobacter/genética , Fusarium/crescimento & desenvolvimento , Mimosa/crescimento & desenvolvimento , Phaseolus/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Serratia/classificação , Serratia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA