Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2666, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531855

RESUMO

To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.


Assuntos
Pseudomonas putida , Xilose , Xilose/metabolismo , Pseudomonas putida/genética , Transaldolase/genética , Engenharia Metabólica , Via de Pentose Fosfato
2.
ISME J ; 15(6): 1751-1766, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33432138

RESUMO

As a frequent inhabitant of sites polluted with toxic chemicals, the soil bacterium and plant-root colonizer Pseudomonas putida can tolerate high levels of endogenous and exogenous oxidative stress. Yet, the ultimate reason of such phenotypic property remains largely unknown. To shed light on this question, metabolic network-wide routes for NADPH generation-the metabolic currency that fuels redox-stress quenching mechanisms-were inspected when P. putida KT2440 was challenged with a sub-lethal H2O2 dose as a proxy of oxidative conditions. 13C-tracer experiments, metabolomics, and flux analysis, together with the assessment of physiological parameters and measurement of enzymatic activities, revealed a substantial flux reconfiguration in oxidative environments. In particular, periplasmic glucose processing was rerouted to cytoplasmic oxidation, and the cyclic operation of the pentose phosphate pathway led to significant NADPH-forming fluxes, exceeding biosynthetic demands by ~50%. The resulting NADPH surplus, in turn, fueled the glutathione system for H2O2 reduction. These properties not only account for the tolerance of P. putida to environmental insults-some of which end up in the formation of reactive oxygen species-but they also highlight the value of this bacterial host as a platform for environmental bioremediation and metabolic engineering.


Assuntos
Pseudomonas putida , Peróxido de Hidrogênio , Redes e Vias Metabólicas , Oxirredução , Estresse Oxidativo
3.
Metab Eng ; 54: 200-211, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31009747

RESUMO

The core metabolism for glucose assimilation of the soil bacterium and platform strain Pseudomonas putida KT2440 has been reshaped from the native, cyclically-operating Entner-Doudoroff (ED) pathway to a linear Embden-Meyerhof-Parnas (EMP) glycolysis. The genetic strategy deployed to obtain a suitable host for the synthetic EMP route involved not only eliminating enzymatic activities of the ED pathway, but also erasing peripheral reactions for glucose oxidation that divert carbon skeletons into the formation of organic acids in the periplasm. Heterologous glycolytic enzymes, recruited from Escherichia coli, were genetically knocked-in in the mutant strain to fill the metabolic gaps for the complete metabolism of glucose to pyruvate through a synthetic EMP route. A suite of genetic, physiological, and biochemical tests in the thereby-refactored P. putida strain-which grew on glucose as the sole carbon and energy source-demonstrated the functional replacement of the native sugar metabolism by a synthetic catabolism. 13C-labelling experiments indicated that the bulk of pyruvate in the resulting strain was generated through the metabolic device grafted in P. putida. Strains carrying the synthetic glycolysis were further engineered for carotenoid synthesis from glucose, indicating that the implanted EMP route enabled higher carotenoid content on biomass and yield on sugar as compared with strains running the native hexose catabolism. Taken together, our results highlight how conserved metabolic features in a platform bacterium can be rationally reshaped for enhancing physiological traits of interest.


Assuntos
Escherichia coli , Glucose , Glicólise/genética , Microrganismos Geneticamente Modificados , Periplasma , Pseudomonas , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/genética , Glucose/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Periplasma/enzimologia , Periplasma/genética , Pseudomonas/enzimologia , Pseudomonas/genética
4.
Methods Mol Biol ; 1772: 3-24, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29754220

RESUMO

The Embden-Meyerhof-Parnas (EMP) pathway is widely accepted to be the biochemical standard of glucose catabolism. The well-characterized glycolytic route of Escherichia coli, based on the EMP catabolism, is an example of an intricate pathway in terms of genomic organization of the genes involved and patterns of gene expression and regulation. This intrinsic genetic and metabolic complexity renders it difficult to engineer glycolytic activities and transfer them onto other microbial cell factories, thus limiting the biotechnological potential of bacterial hosts that lack the route. Taking into account the potential applications of such a portable tool for targeted pathway engineering, in the present protocol we describe how the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals, and synthesized de novo following a standard (i.e., GlucoBrick) that facilitates their grouping in the form of functional modules that can be combined at the user's will. This novel genetic tool allows for the à la carte implementation or boosting of EMP pathway activities into different Gram-negative bacteria. The potential of the GlucoBrick platform is further illustrated by engineering novel glycolytic activities in the most representative members of the Pseudomonas genus (Pseudomonas putida and Pseudomonas aeruginosa).


Assuntos
Glicólise/genética , Bactérias Gram-Negativas/genética , Metabolismo dos Carboidratos/genética , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Engenharia Metabólica/métodos
5.
ACS Synth Biol ; 6(5): 793-805, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28121421

RESUMO

The Embden-Meyerhof-Parnas (EMP) pathway is generally considered to be the biochemical standard for glucose catabolism. Alas, its native genomic organization and the control of gene expression in Escherichia coli are both very intricate, which limits the portability of the EMP pathway to other biotechnologically important bacterial hosts that lack the route. In this work, the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals, and synthesized de novo following a standard (GlucoBrick) that enables their grouping in the form of functional modules at the user's will. After verifying their activity in several glycolytic mutants of E. coli, the versatility of these GlucoBricks was demonstrated in quantitative physiology tests and biochemical assays carried out in Pseudomonas putida KT2440 and P. aeruginosa PAO1 as the heterologous hosts. Specific configurations of GlucoBricks were also adopted to streamline the downward circulation of carbon from hexoses to pyruvate in E. coli recombinants, thereby resulting in a 3-fold increase of poly(3-hydroxybutyrate) synthesis from glucose. Refactoring whole metabolic blocks in the fashion described in this work thus eases the engineering of biochemical processes where the optimization of carbon traffic is facilitated by the operation of the EMP pathway-which yields more ATP than other glycolytic routes such as the Entner-Doudoroff pathway.


Assuntos
Glicólise/fisiologia , Bactérias Gram-Negativas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicólise/genética , Bactérias Gram-Negativas/genética , Hidroxibutiratos/metabolismo , Engenharia Metabólica/métodos , Poliésteres/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA