Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 277: 127506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783182

RESUMO

Fusarium spp. comprise various species of filamentous fungi that cause severe diseases in plant crops of both agricultural and forestry interest. These plant pathogens produce a wide range of molecules with diverse chemical structures and biological activities. Genetic functional analyses of some of these compounds have shown their role as virulence factors (VF). However, their mode of action and contributions to the infection process for many of these molecules are still unknown. This review aims to analyze the state of the art in Fusarium VF, emphasizing their biological targets on the plant hosts. It also addresses the current experimental approaches to improve our understanding of their role in virulence and suggests relevant research questions that remain to be answered with a greater focus on species of agroeconomic importance. In this review, a total of 37 confirmed VF are described, including 22 proteinaceous and 15 non-proteinaceous molecules, mainly from Fusarium oxysporum and Fusarium graminearum and, to a lesser extent, in Fusarium verticillioides and Fusarium solani.


Assuntos
Fusarium , Fatores de Virulência , Fatores de Virulência/genética , Virulência/genética , Produtos Agrícolas , Doenças das Plantas/microbiologia
2.
Front Microbiol ; 14: 1224096, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520351

RESUMO

Transcription factors in phytopathogenic fungi are key players due to their gene expression regulation leading to fungal growth and pathogenicity. The KilA-N family encompasses transcription factors unique to fungi, and the Bqt4 subfamily is included in it and is poorly understood in filamentous fungi. In this study, we evaluated the role in growth and pathogenesis of the homologous of Bqt4, FspTF, in Fusarium sp. isolated from the ambrosia beetle Xylosandrus morigerus through the characterization of a CRISPR/Cas9 edited strain in Fsptf. The phenotypic analysis revealed that TF65-6, the edited strain, modified its mycelia growth and conidia production, exhibited affectation in mycelia and culture pigmentation, and in the response to certain stress conditions. In addition, the plant infection process was compromised. Untargeted metabolomic and transcriptomic analysis, clearly showed that FspTF may regulate secondary metabolism, transmembrane transport, virulence, and diverse metabolic pathways such as lipid metabolism, and signal transduction. These data highlight for the first time the biological relevance of an orthologue of Bqt4 in Fusarium sp. associated with an ambrosia beetle.

3.
Microb Ecol ; 85(4): 1396-1411, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35357520

RESUMO

Plants interact with a great diversity of microorganisms or insects throughout their life cycle in the environment. Plant and insect interactions are common; besides, a great variety of microorganisms associated with insects can induce pathogenic damage in the host, as mutualist phytopathogenic fungus. However, there are other microorganisms present in the insect-fungal association, whose biological/ecological activities and functions during plant interaction are unknown. In the present work evaluated, the role of microorganisms associated with Xyleborus affinis, an important beetle species within the Xyleborini tribe, is characterized by attacking many plant species, some of which are of agricultural and forestry importance. We isolated six strains of microorganisms associated with X. affinis shown as plant growth-promoting activity and altered the root system architecture independent of auxin-signaling pathway in Arabidopsis seedlings and antifungal activity against the phytopathogenic fungus Fusarium sp. INECOL_BM-06. In addition, evaluating the tripartite interaction plant-microorganism-fungus, interestingly, we found that microorganisms can induce protection against the phytopathogenic fungus Fusarium sp. INECOL_BM-06 involving the jasmonic acid-signaling pathway and independent of salicylic acid-signaling pathway. Our results showed the important role of this microorganisms during the plant- and insect-microorganism interactions, and the biological potential use of these microorganisms as novel agents of biological control in the crops of agricultural and forestry is important.


Assuntos
Arabidopsis , Besouros , Fusarium , Gorgulhos , Animais , Antifúngicos/metabolismo , Plântula/microbiologia , Arabidopsis/microbiologia , Gorgulhos/microbiologia , Insetos , Doenças das Plantas/microbiologia
4.
J Fungi (Basel) ; 8(3)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35330233

RESUMO

Ambrosia beetles are insect vectors of important plant diseases and have been considered as a threat to forest ecosystems, agriculture, and the timber industry. Several factors have been suggested as promoters of the pathogenic behavior of ambrosia beetles; one of them is the nature of the fungal mutualist and its ability to establish an infectious process. In Mexico, Xylosandrus morigerus is an invasive ambrosia beetle that damages many agroecosystems. Herein, two different isolates from the X. morigerus ambrosia beetle belonging to the Fusarium genus are reported. Both isolates belong to the Fusarium solani species complex (FSSC) but not to the Ambrosia Fusarium clade (AFC). The two closely related Fusarium isolates are pathogenic to different forest and agronomic species, and the morphological differences between them and the extracellular protease profile suggest intraspecific variability. This study shows the importance of considering these beetles as vectors of different species of fungal plant pathogens, with some of them even being phylogenetically closely related and having different pathogenic abilities, highlighting the relevance of the fungal mutualist as a factor for the ambrosia complex becoming a pest.

5.
J Fungi (Basel) ; 7(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34947009

RESUMO

Neofusicoccum parvum belongs to the Botryosphaeriaceae family, which contains endophytes and pathogens of woody plants. In this study, we isolated 11 strains from diseased tissue of Liquidambar styraciflua. Testing with Koch's postulates-followed by a molecular approach-revealed that N. parvum was the most pathogenic strain. We established an in vitro pathosystem (L. styraciflua foliar tissue-N. parvum) in order to characterize the infection process during the first 16 days. New CysRPs were identified for both organisms using public transcriptomic and genomic databases, while mRNA expression of CysRPs was analyzed by RT-qPCR. The results showed that N. parvum caused disease symptoms after 24 h that intensified over time. Through in silico analysis, 5 CysRPs were identified for each organism, revealing that all of the proteins are potentially secreted and novel, including two of N. parvum proteins containing the CFEM domain. Interestingly, the levels of the CysRPs mRNAs change during the interaction. This study reports N. parvum as a pathogen of L. styraciflua for the first time and highlights the potential involvement of CysRPs in both organisms during this interaction.

6.
PeerJ ; 9: e11215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954045

RESUMO

Fusarium kuroshium is a novel member of the Ambrosia Fusarium Clade (AFC) that has been recognized as one of the symbionts of the invasive Kuroshio shot hole borer, an Asian ambrosia beetle. This complex is considered the causal agent of Fusarium dieback, a disease that has severely threatened natural forests, landscape trees, and avocado orchards in the last 8 years. Despite the interest in this species, the molecular responses of both the host and F. kuroshium during the infection process and disease establishment remain unknown. In this work, we established an in vitro pathosystem using Hass avocado stems inoculated with F. kuroshium to investigate differential gene expression at 1, 4, 7 and 14 days post-inoculation. RNA-seq technology allowed us to obtain data from both the plant and the fungus, and the sequences obtained from both organisms were analyzed independently. The pathosystem established was able to mimic Fusarium dieback symptoms, such as carbohydrate exudation, necrosis, and vascular tissue discoloration. The results provide interesting evidence regarding the genes that may play roles in the avocado defense response to Fusarium dieback disease. The avocado data set comprised a coding sequence collection of 51,379 UniGenes, from which 2,403 (4.67%) were identified as differentially expressed. The global expression analysis showed that F. kuroshium responsive UniGenes can be clustered into six groups according to their expression profiles. The biologically relevant functional categories that were identified included photosynthesis as well as responses to stress, hormones, abscisic acid, and water deprivation. Additionally, processes such as oxidation-reduction, organization and biogenesis of the cell wall and polysaccharide metabolism were detected. Moreover, we identified orthologues of nucleotide-binding leucine-rich receptors, and their possible action mode was analyzed. In F. kuroshium, we identified 57 differentially expressed genes. Interestingly, the alcohol metabolic process biological category had the highest number of upregulated genes, and the enzyme group in this category may play an important role in the mechanisms of secondary metabolite detoxification. Hydrolytic enzymes, such as endoglucanases and a pectate lyase, were also identified, as well as some proteases. In conclusion, our research was conducted mainly to explain how the vascular tissue of a recognized host of the ambrosia complex responds during F. kuroshium infection since Fusarium dieback is an ambrosia beetle-vectored disease and many variables facilitate its establishment.

7.
Toxins (Basel) ; 13(4)2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918546

RESUMO

Fusarium kuroshium is the fungal symbiont associated with the ambrosia beetle Euwallacea kuroshio, a plague complex that attacks avocado, among other hosts, causing a disease named Fusarium dieback (FD). However, the contribution of F. kuroshium to the establishment of this disease remains unknown. To advance the understanding of F. kuroshium pathogenicity, we profiled its exo-metabolome through metabolomics tools based on accurate mass spectrometry. We found that F. kuroshium can produce several key metabolites with phytotoxicity properties and other compounds with unknown functions. Among the metabolites identified in the fungal exo-metabolome, fusaric acid (FA) was further studied due to its phytotoxicity and relevance as a virulence factor. We tested both FA and organic extracts from F. kuroshium at various dilutions in avocado foliar tissue and found that they caused necrosis and chlorosis, resembling symptoms similar to those observed in FD. This study reports for first-time insights regarding F. kuroshium associated with its virulence, which could lead to the potential development of diagnostic and management tools of FD disease and provides a basis for understanding the interaction of F. kuroshium with its host plants.


Assuntos
Fusarium/metabolismo , Metaboloma , Micotoxinas/metabolismo , Persea/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Cromatografia de Fase Reversa , Fusarium/patogenicidade , Interações Hospedeiro-Patógeno , Metabolômica , Persea/crescimento & desenvolvimento , Persea/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Virulência
8.
PLoS One ; 16(1): e0246079, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507916

RESUMO

A key factor to take actions against phytosanitary problems is the accurate and rapid detection of the causal agent. Here, we develop a molecular diagnostics system based on comparative genomics to easily identify fusariosis and specific pathogenic species as the Fusarium kuroshium, the symbiont of the ambrosia beetle Euwallaceae kuroshio Gomez and Hulcr which is responsible for Fusarium dieback disease in San Diego CA, USA. We performed a pan-genome analysis using sixty-three ascomycetes fungi species including phytopathogens and fungi associated with the ambrosia beetles. Pan-genome analysis revealed that 2,631 orthologue genes are only shared by Fusarium spp., and on average 3,941 (SD ± 1,418.6) are species-specific genes. These genes were used for PCR primer design and tested on DNA isolated from i) different strains of ascomycete species, ii) artificially infected avocado stems and iii) plant tissue of field-collected samples presumably infected. Our results let us propose a useful set of primers to either identify any species from Fusarium genus or, in a specific manner, species such as F. kuroshium, F. oxysporum, and F. graminearum. The results suggest that the molecular strategy employed in this study can be expanded to design primers against different types of pathogens responsible for provoking critical plant diseases.


Assuntos
Ascomicetos , Besouros/microbiologia , Fusarium , Genoma Fúngico , Persea/microbiologia , Doenças das Plantas/microbiologia , Animais , Ascomicetos/classificação , Ascomicetos/genética , Fusarium/classificação , Fusarium/genética
9.
Microbiol Res ; 219: 74-83, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642469

RESUMO

Recent studies showed that bacterial volatile organic compounds (VOCs) play an important role in the suppression of phytopathogens. The ability of VOCs produced by avocado (Persea americana Mill.) rhizobacteria to suppress the growth of common avocado pathogens was therefore investigated. We evaluated the antifungal activity of VOCs emitted by avocado rhizobacteria in a first screening against Fusarium solani, and in subsequent antagonism assays against Fusarium sp. associated with Kuroshio shot hole borer, Colletotrichum gloeosporioides and Phytophthora cinnamomi, responsible for Fusarium dieback, anthracnosis and Phytophthora root rot in avocado, respectively. We also analyzed the composition of the bacterial volatile profiles by solid phase microextraction (SPME) gas chromatography coupled to mass spectrometry (GC-MS). Seven isolates, belonging to the bacterial genera Bacillus and Pseudomonas, reduced the mycelial growth of F. solani with inhibition percentages higher than 20%. Isolate HA, related to Bacillus amyloliquefaciens, significantly reduced the mycelial growth of Fusarium sp. and C. gloeosporioides and the mycelium density of P. cinnamomi. Isolates SO and SJJ, also members of the genus Bacillus, reduced Fusarium sp. mycelial growth and induced morphological alterations of fungal hyphae whilst isolate HB, close to B. mycoides, inhibited C. gloeosporioides. The analysis of the volatile profiles revealed the presence of ketones, pyrazines and sulfur-containing compounds, previously reported with antifungal activity. Altogether, our results support the potential of avocado rhizobacteria to act as biocontrol agents of avocado fungal pathogens and emphasize the importance of Bacillus spp. for the control of emerging avocado diseases such as Fusarium dieback.


Assuntos
Antifúngicos/farmacologia , Bacillus/metabolismo , Agentes de Controle Biológico/farmacologia , Colletotrichum/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Persea/microbiologia , Phytophthora/efeitos dos fármacos , Pseudomonas/metabolismo , Compostos Orgânicos Voláteis/farmacologia , Animais , Antifúngicos/metabolismo , Agentes de Controle Biológico/metabolismo , Besouros/microbiologia , Compostos Orgânicos Voláteis/metabolismo
10.
BMC Genomics ; 19(1): 721, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285612

RESUMO

BACKGROUND: The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS: Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS: We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors.


Assuntos
Meio Ambiente , Fusarium/genética , Fusarium/fisiologia , Perfilação da Expressão Gênica , Gorgulhos/microbiologia , Animais , Ácido Fusárico/biossíntese , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Concentração de Íons de Hidrogênio , Anotação de Sequência Molecular , Filogenia , Homologia de Sequência do Ácido Nucleico , Simbiose
11.
Genome Announc ; 5(35)2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860245

RESUMO

Here, we report the genome of Fusarium euwallaceae strain HFEW-16-IV-019, an isolate obtained from Kuroshio shot hole borer (a Euwallacea sp.). These beetles were collected in Tijuana, Mexico, from elm trees showing typical symptoms of Fusarium dieback. The final assembly consists of 287 scaffolds spanning 48,274,071 bp and 13,777 genes.

12.
Front Plant Sci ; 7: 300, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014322

RESUMO

Polyamines (PAs) are small aliphatic polycations that are found ubiquitously in all organisms. In plants, PAs are involved in diverse biological processes such as growth, development, and stress responses. In Arabidopsis thaliana, the arginine decarboxylase enzymes (ADC1 and 2) catalyze the first step of PA biosynthesis. For a better understanding of PA biological functions, mutants in PA biosynthesis have been generated; however, the double adc1/adc2 mutant is not viable in A. thaliana. In this study, we generated non-lethal A. thaliana lines through an artificial microRNA that simultaneously silenced the two ADC genes (amiR:ADC). The generated transgenic lines (amiR:ADC-L1 and -L2) showed reduced AtADC1 and AtADC2 transcript levels. For further analyses the amiR:ADC-L2 line was selected. We found that the amiR:ADC-L2 line showed a significant decrease of their PA levels. The co-silencing revealed a stunted growth in A. thaliana seedlings, plantlets and delay in its flowering rate; these phenotypes were reverted with PA treatment. In addition, amiR:ADC-L2 plants displayed two seed phenotypes, such as yellow and brownish seeds. The yellow mutant seeds were smaller than adc1, adc2 mutants and wild type seeds; however, the brownish were the smallest seeds with arrested embryos at the torpedo stage. These data reinforce the importance of PA homeostasis in the plant development processes.

13.
Plant Physiol Biochem ; 95: 49-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26186363

RESUMO

Plants are associated with a wide range of microorganisms throughout their life cycle, and some interactions result on plant benefits. Trichoderma species are plant beneficial fungi that enhance plant growth and development, contribute to plant nutrition and induce defense responses. Nevertheless, the molecules involved in these beneficial effects still need to be identify. Polyamines are ubiquitous molecules implicated in plant growth and development, and in the establishment of plant microbe interactions. In this study, we assessed the polyamine profile in Arabidopsis plants during the interaction with Trichoderma virens and Trichoderma atroviride, using a system that allows direct plant-fungal contact or avoids their physical interaction (split system). The plantlets that grew in the split system exhibited higher biomass than the ones in direct contact with Trichoderma species. After 3 days of interaction, a significant decrease in Arabidopsis polyamine levels was observed in both systems (direct contact and split). After 5 days of interaction polyamine levels were increased. The highest levels were observed with T. atroviride (split system), and with T. virens (direct contact). The expression levels of Arabidopsis ADC1 and ADC2 genes during the interaction with the fungi were also assessed. We observed a time dependent regulation of ADC1 and ADC2 genes, which correlates with polyamine levels. Our data show an evident change in polyamine profile during Arabidopsis - Trichoderma interaction, accompanied by evident alterations in plant root architecture. Polyamines could be involved in the changes undergone by plant during the interaction with this beneficial fungus.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Poliaminas Biogênicas/biossíntese , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas/microbiologia , Trichoderma/fisiologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
14.
Front Plant Sci ; 6: 125, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806037

RESUMO

The field of plant sphingolipid biology has evolved in recent years. Sphingolipids are abundant in cell membranes, and genetic analyses revealed essential roles for these lipids in plant growth, development, and responses to abiotic and biotic stress. Salicylic acid (SA) is a key signaling molecule that is required for induction of defense-related genes and rapid and localized cell death at the site of pathogen infection (hypersensitive response) during incompatible host-pathogen interactions. Conceivably, while levels of SA rapidly increase upon pathogen infection for defense activation, they must be tightly regulated during plant growth and development in the absence of pathogens. Genetic and biochemical evidence suggest that the sphingolipid intermediates, long-chain sphingoid bases, and ceramides, play a role in regulating SA accumulation in plant cells. However, how signals generated from the perturbation of these key sphingolipid intermediates are transduced into the activation of the SA pathway has long remained to be an interesting open question. At least four types of molecules - MAP kinase 6, reactive oxygen species, free calcium, and nitric oxide - could constitute a mechanistic link between sphingolipid metabolism and SA accumulation and signaling.

15.
Front Plant Sci ; 5: 95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24672533

RESUMO

During ontogeny, plants interact with a wide variety of microorganisms. The association with mutualistic microbes results in benefits for the plant. By contrast, pathogens may cause a remarkable impairment of plant growth and development. Both types of plant-microbe interactions provoke notable changes in the polyamine (PA) metabolism of the host and/or the microbe, being each interaction a complex and dynamic process. It has been well documented that the levels of free and conjugated PAs undergo profound changes in plant tissues during the interaction with microorganisms. In general, this is correlated with a precise and coordinated regulation of PA biosynthetic and catabolic enzymes. Interestingly, some evidence suggests that the relative importance of these metabolic pathways may depend on the nature of the microorganism, a concept that stems from the fact that these amines mediate the activation of plant defense mechanisms. This effect is mediated mostly through PA oxidation, even though part of the response is activated by non-oxidized PAs. In the last years, a great deal of effort has been devoted to profile plant gene expression following microorganism recognition. In addition, the phenotypes of transgenic and mutant plants in PA metabolism genes have been assessed. In this review, we integrate the current knowledge on this field and analyze the possible roles of these amines during the interaction of plants with microbes.

16.
Planta ; 235(5): 965-78, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22120123

RESUMO

Fusarium verticillioides is an important pathogen in maize that causes various diseases affecting all stages of plant development worldwide. The fungal pathogen could be seed borne or survive in soil and penetrate the germinating seed. Most F. verticillioides strains produce fumonisins, which are of concern because of their toxicity to animals and possibly humans, and because they enhance virulence against seedlings of some maize genotypes. In this work, we studied the action of fumonisin B1 (FB1) on the activity of maize ß-1,3-glucanases involved in plant defense response. In maize embryos, FB1 induced an acidic isoform while suppressing the activity of two basic isoforms. This acidic isoform was induced also with 2,6-dichloroisonicotinic acid, an analog of salicylic acid. Repression of the basic isoforms suggested a direct interaction of the enzymes with the mycotoxin as in vitro experiments showed that pure FB1 inhibited the basic ß-1,3-glucanases with an IC(50) of 53 µM. When germinating maize embryos were inoculated with F. verticillioides the same dual effect on ß-1,3-glucanase activities that we observed with the pure toxin was reproduced. Similar levels of FB1 were recovered at 24 h germination in maize tissue when they were treated with pure FB1 or inoculated with an FB1-producing strain. These results suggest that ß-1,3-glucanases are a relevant physiological target and their modulation by FB1 might contribute to F. verticillioides colonization.


Assuntos
Fumonisinas/metabolismo , Fusarium/metabolismo , Glucana 1,3-beta-Glucosidase/metabolismo , Micotoxinas/metabolismo , Sementes/microbiologia , Zea mays/enzimologia , Zea mays/microbiologia , Adjuvantes Imunológicos/metabolismo , Quitinases/metabolismo , Resistência à Doença/imunologia , Fumonisinas/toxicidade , Micotoxinas/toxicidade , Proteínas de Plantas/metabolismo , Zea mays/imunologia
17.
J Agric Food Chem ; 53(22): 8565-71, 2005 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-16248554

RESUMO

Fumonisins are mycotoxins produced by Fusarium verticillioides (Sacc. Nirenberg) in maize (Zea mays L.), a staple crop in Mexico. In this study, we report the isolation and identification of 67 Fusarium strains isolated from maize kernels collected in Northwest and Central Mexico. The strains were characterized regarding fumonisin B(1) production and the presence of the FUM1 gene. F. verticillioides was the predominant species isolated in both geographic regions, but the isolates from Northwest Mexico produced higher levels of fumonisin. A polymerase chain reaction (PCR)-based method, to detect a region of the FUM1 gene involved in fumonisin biosynthesis, was developed and employed to detect mycotoxigenic fungi in pure culture and in contaminated maize. The presence of the FUM1 gene was associated with fumonisin production in most isolates, except seven that did not synthesize fumonisin but contained the gene in their genome. The PCR method allowed the direct detection of fungal contamination in ground corn and could be employed to screen for the presence of potential mycotoxigenic fusaria.


Assuntos
Fumonisinas/metabolismo , Fusarium/metabolismo , Reação em Cadeia da Polimerase/métodos , Zea mays/microbiologia , Sequência de Bases , DNA Fúngico/análise , Contaminação de Alimentos/análise , Fusarium/genética , Fusarium/isolamento & purificação , México , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA