Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1128: 52-61, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32825912

RESUMO

The most commonly used technique for monitoring microbial contamination in cosmetic products is plate counting. In this contribution, headspace - gas chromatography (HS-GC) coupled to mass spectrometry (MS) or ion mobility spectrometry (IMS) is proposed as a technique to evaluate rapidly and accurately the state of microbial colonies in cosmetic creams using the volatile organic compounds produced by microorganisms (MVOC). The work focuses on monitoring two of the microorganisms that most frequently occur in such creams, Candida albicans and Staphylococcus aureus. In addition, two different types of ingredient with antimicrobial properties (a chemical preservative and a natural preservative) were added to study the behaviour of these microorganisms under different conditions. The facial creams were elaborated and inoculated with the two above microorganisms, and then sampled weekly for 4 weeks, analysing the evolution of the MVOCs by HS-GC-MS and HS-GC-IMS. In addition, microbial contamination was determined by the classical plate counting method. The pH, colour, viscosity and water activity parameters were also measured. The use of chemometric tools is essential because of the large amount of data generated, and different models based on discriminant analysis with an orthogonal projection on latent structures (OPLS-DA) were constructed. The optimal models obtained by both analytical techniques allowed differentiation between contaminated and non-contaminated creams, with a validation success rate of 94.4%. In addition, MVOC monitoring also allowed assessment of the microbial concentration.


Assuntos
Cosméticos , Compostos Orgânicos Voláteis , Análise Discriminante , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Mobilidade Iônica , Compostos Orgânicos Voláteis/análise
2.
J Food Sci Technol ; 55(11): 4623-4633, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30333659

RESUMO

The survival of Sacharomyces cerevisiae in Trypticase Soy Broth and natural orange juice processed by combined use of thermo-ultrasound and cinnamon leaf essential oil has been evaluated and modelled. Minimal inhibitory concentration of cinnamon leaf essential oil against S. cerevisiae was determined using absorbance measurements based on the microtiter plate assay. The resistance of S. cerevisiae cells to the combined action of thermal treatment with ultrasound was analyzed in Trypticase Soy Broth with different concentrations of cinnamon leaf essential oil at 30, 40 and 50 °C. The best conditions of inactivation in TSB to study the inactivation of S. cerevisiae in natural orange juice. Experimental data were fitted by using the "shoulder + log-linear" and "Weibull" models (GInaFiT). The combined use of thermo-ultrasound and cinnamon leaf essential oil enhanced the inactivation of S. cerevisiae in TSB and natural orange juice.

3.
J Food Sci ; 82(9): 2128-2133, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28833163

RESUMO

In order to preserve a commercial dealcoholized red wine (DRW), a study with 4 preservatives and binary mixtures of them were performed against 2 native spoilage yeasts: Rhodotorula mucilaginosa and Saccharomyces cerevisiae. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) for potassium sorbate, sodium benzoate, sodium metabisulfite and dimethyl dicarbonate (DMDC) were evaluated in DRW stored at 25 °C. MICs of potassium sorbate and sodium metabisulfite were 250 and 60 mg/kg, respectively for both target strains. However for sodium benzoate, differences between yeasts were found; R. mucilaginosa was inhibited at 125 mg/kg, while S. cerevisiae at 250 mg/kg. Regarding MFC, differences between strains were only found for sodium metabisulfite obtaining a MFC of 500 mg/kg for R. mucilaginosa and a MFC of 250 mg/kg for S. cerevisiae. Potassium sorbate and sodium benzoate showed the MFC at 1000 mg/kg and DMDC at 200 mg/kg. Regarding the effect of binary mixtures the Fractional Fungicidal Concentration Index (FFCi ) methodology showed that binary mixtures of 100 mg/kg DMDC/200 mg/kg potassium sorbate (FFCi = 0.7) and 50 mg/kg DMDC / 400 mg/kg sodium benzoate (FFCi = 0.65) have both synergistic effect against the 2 target strains. These binary mixtures can control the growth of spoilage yeasts in DRW without metabisulfite addition. The results of this work may be important in preserving the health of DRW consumers by eliminating the use of metabisulfite and reducing the risk of growth of R. mucilagosa, recently recognized as an emerging pathogen.


Assuntos
Conservantes de Alimentos/farmacologia , Vinho/análise , Leveduras/efeitos dos fármacos , Dietil Pirocarbonato/análogos & derivados , Dietil Pirocarbonato/farmacologia , Conservação de Alimentos , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Benzoato de Sódio/farmacologia , Ácido Sórbico/farmacologia , Sulfitos/farmacologia , Vinho/microbiologia , Leveduras/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA