Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38068624

RESUMO

Cucurbita ficifolia is a squash grown from Mexico to Bolivia. Its ancestor is unknown, but it has limited compatibility with wild xerophytic Cucurbita from Mexico's highlands. We assembled the reference genome of C. ficifolia and assessed the genetic diversity and historical demography of the crop in Mexico with 2524 nuclear single nucleotide polymorphisms (SNPs). We also evaluated the gene flow between C. ficifolia and xerophytic taxa with 6292 nuclear and 440 plastome SNPs from 142 individuals sampled in 58 sites across their area of sympatry. Demographic modelling of C. ficifolia supports an eight-fold decrease in effective population size at about 2409 generations ago (95% CI = 464-12,393), whereas plastome SNPs support the expansion of maternal lineages ca. 1906-3635 years ago. Our results suggest a recent spread of C. ficifolia in Mexico, with high genetic diversity (π = 0.225, FST = 0.074) and inbreeding (FIS = 0.233). Coalescent models suggest low rates of gene flow with C. radicans and C. pedatifolia, whereas ABBA-BABA tests did not detect significant gene flow with wild taxa. Despite the ecogeographic proximity of C. ficifolia and its relatives, this crop persists as a highly isolated lineage of puzzling origin.

2.
PLoS One ; 18(11): e0294534, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37972146

RESUMO

Agave potatorum Zucc. locally known as Tobalá, is an important species for mezcal production. It is a perennial species that takes 10 to 15 years to reach reproductive age. Because of high demand of Tobalá mezcal and the slow maturation of the plants, its wild populations have been under intense anthropogenic pressure. The main objective of this study was to estimate the genome-wide diversity in A. potatorum and determine if the type of management has had any effect on its diversity, inbreeding and structure. We analyzed 174 individuals (105 wild, 42 cultivated and 27 from nurseries) from 34 sites with a reduced representation genomic method (ddRADseq), using 14,875 SNPs. The diversity measured as expected heterozygosity was higher in the nursery and wild plants than in cultivated samples. We did not find private alleles in the cultivated and nursery plants, which indicates that the individuals under management recently derived from wild populations, which was supported by higher gene flow estimated from wild populations to the managed plants. We found low but positive levels of inbreeding (FIS = 0.082), probably related to isolation of the populations. We detected low genetic differentiation among populations (FST = 0.0796), with positive and significant isolation by distance. The population genetic structure in the species seems to be related to elevation and ecology, with higher gene flow among populations in less fragmented areas. We detected an outlier locus related to the recognition of pollen, which is also relevant to self-incompatibility protein (SI). Due to seed harvest and long generation time, the loss of diversity in A. potatorum has been gradual and artificial selection and incipient management have not yet caused drastic differences between cultivated and wild plants. Also, we described an agroecological alternative to the uncontrolled extraction of wild individuals.


Assuntos
Agave , Humanos , Agave/genética , México , Endogamia , Deriva Genética , Genômica , Variação Genética
3.
Hortic Res ; 8(1): 109, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33931618

RESUMO

Despite their economic importance and well-characterized domestication syndrome, the genomic impact of domestication and the identification of variants underlying the domestication traits in Cucurbita species (pumpkins and squashes) is currently lacking. Cucurbita argyrosperma, also known as cushaw pumpkin or silver-seed gourd, is a Mexican crop consumed primarily for its seeds rather than fruit flesh. This makes it a good model to study Cucurbita domestication, as seeds were an essential component of early Mesoamerican diet and likely the first targets of human-guided selection in pumpkins and squashes. We obtained population-level data using tunable Genotype by Sequencing libraries for 192 individuals of the wild and domesticated subspecies of C. argyrosperma across Mexico. We also assembled the first high-quality wild Cucurbita genome. Comparative genomic analyses revealed several structural variants and presence/absence of genes related to domestication. Our results indicate a monophyletic origin of this domesticated crop in the lowlands of Jalisco. We found evidence of gene flow between the domesticated and wild subspecies, which likely alleviated the effects of the domestication bottleneck. We uncovered candidate domestication genes that are involved in the regulation of growth hormones, plant defense mechanisms, seed development, and germination. The presence of shared selected alleles with the closely related species Cucurbita moschata suggests domestication-related introgression between both taxa.

4.
Am J Bot ; 107(3): 510-525, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32072632

RESUMO

PREMISE: Domestication usually involves local adaptation to environmental conditions. Cucurbita species are a promising model for studying these processes. Cucurbita moschata is the third major crop in the genus because of its economic value and because it displays high landrace diversity, but research about its genetic diversity, population structure, and phylogeography is limited. We aimed at understanding how geography and elevation shape the distribution of genetic diversity in C. moschata landraces in Mexico. METHODS: We sampled fruits from 24 localities throughout Mexico. We assessed 11 nuclear microsatellite loci, one mtDNA region, and three cpDNA regions but found no variation in cpDNA. We explored genetic structure with cluster analysis, and phylogeographic relationships with haplotype network analysis. RESULTS: Mitochondrial genetic diversity was high, and nuclear genetic differentiation among localities was intermediate compared to other domesticated Cucurbita. We found high levels of inbreeding. We recovered two mitochondrial lineages: highland (associated with the Trans-Mexican Volcanic Belt) and lowland. Nuclear microsatellites show that localities from the Yucatan Peninsula constitute a well-differentiated group. CONCLUSIONS: Mexico is an area of high diversity for C. moschata, and these landraces represent important plant genetic resources. In Mexico this species is characterized by divergence processes linked to an elevational gradient, which could be related to adaptation and may be of value for applications in agriculture. The Isthmus of Tehuantepec may be a partial barrier to gene flow. Morphological variation, agricultural management, and cultural differences may be related to this pattern of genetic structure, but further studies are needed.


Assuntos
Cucurbita , DNA Mitocondrial , Variação Genética , Haplótipos , México , Filogenia , Filogeografia
5.
J Mol Evol ; 87(9-10): 327-342, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31701178

RESUMO

Twenty-nine DNA regions of plastid origin have been previously identified in the mitochondrial genome of Cucurbita pepo (pumpkin; Cucurbitaceae). Four of these regions harbor homolog sequences of rbcL, matK, rpl20-rps12 and trnL-trnF, which are widely used as molecular markers for phylogenetic and phylogeographic studies. We extracted the mitochondrial copies of these regions based on the mitochondrial genome of C. pepo and, along with published sequences for these plastome markers from 13 Cucurbita taxa, we performed phylogenetic molecular analyses to identify inter-organellar transfer events in the Cucurbita phylogeny and changes in their nucleotide substitution rates. Phylogenetic reconstruction and tree selection tests suggest that rpl20 and rbcL mitochondrial paralogs arose before Cucurbita diversification whereas the mitochondrial matK and trnL-trnF paralogs emerged most probably later, in the mesophytic Cucurbita clade. Nucleotide substitution rates increased one order of magnitude in all the mitochondrial paralogs compared to their original plastid sequences. Additionally, mitochondrial trnL-trnF sequences obtained by PCR from nine Cucurbita taxa revealed higher nucleotide diversity in the mitochondrial than in the plastid copies, likely related to the higher nucleotide substitution rates in the mitochondrial region and loss of functional constraints in its tRNA genes.


Assuntos
Cucurbita/genética , Genoma Mitocondrial/genética , Plastídeos/genética , Evolução Biológica , Evolução Molecular , Genes de Plantas/genética , Genoma de Planta/genética , Mitocôndrias/genética , Filogenia , Análise de Sequência de DNA
6.
Proc Biol Sci ; 286(1908): 20191440, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31409251

RESUMO

Cucurbita pepo is an economically important crop, which consists of cultivated C. pepo ssp. pepo, and two wild taxa (C. pepo ssp. fraterna and C. pepo ssp. ovifera). We aimed at understanding the domestication and the diversity of C. pepo in Mexico. We used two chloroplast regions and nine nuclear microsatellite loci to assess the levels of genetic variation and structure for C. pepo ssp. pepo's landraces sampled in 13 locations in Mexico, five improved varieties, one C. pepo ssp. fraterna population and ornamental C. pepo ssp. ovifera. We tested four hypotheses regarding the origin of C. pepo ssp. pepo's ancestor through approximate Bayesian computation: C. pepo ssp. ovifera as the ancestor; C. pepo ssp. fraterna as the ancestor; an unknown extinct lineage as the ancestor; and C. pepo ssp. pepo as hybrid from C. pepo ssp. ovifera and C. pepo ssp. fraterna ancestors. Cucurbita pepo ssp. pepo showed high genetic variation and low genetic differentiation. Cucurbita pepo ssp. fraterna and C. pepo ssp. pepo shared two chloroplast haplotypes. The three subspecies were well differentiated for microsatellite loci. Cucurbita pepo ssp. fraterna was probably C. pepo ssp. pepo's wild ancestor, but subsequent hybridization between taxa complicate defining C. pepo ssp. pepo's ancestor.


Assuntos
Cucurbita/genética , Domesticação , Variação Genética , Repetições de Microssatélites/genética , Núcleo Celular/genética , Cloroplastos/genética , México , Filogeografia
7.
Mol Plant ; 12(4): 506-520, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30630074

RESUMO

Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes.


Assuntos
Cucurbita/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , RNA Longo não Codificante/genética , Evolução Molecular , Cinética , Filogenia
8.
Mol Phylogenet Evol ; 128: 38-54, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30036701

RESUMO

Knowledge of the role of geographical and ecological events associated to the divergence process of wild progenitors is important to understand the process of domestication. We analysed the temporal, spatial and ecological patterns of the diversification of Cucurbita, an American genus of worldwide economic importance. We conducted a phylogenetic analysis based on six chloroplast regions (5907 bp) to estimate diversification rates and dates of divergence between taxa. This is the first phylogenetic study to include C. radicans, a wild species that is endemic to the Trans Mexican Volcanic Belt. We performed analysis of ancestral area reconstruction and paleoreconstructions of species distribution models to understand shifts in wild species ranges. We used principal component analysis (PCA) and multivariate analysis of variance (MANOVA) to evaluate the environmental differentiation among taxa within each clade. The phylogenetic analyses showed good support for at least six independent domestication events in Cucurbita. The genus Cucurbita showed a time of divergence of 11.24 Ma (6.88-17 Ma 95% HDP), and the dates of divergence between taxa within each group ranged from 0.35 to 6.58 Ma, being the divergence between C. lundelliana and C. okeechobeensis subsp. martinezii the most recent. The diversification rate of the genus was constant through time. The diversification of most wild taxa occurred during the Pleistocene, and its date of divergence is concordant with the dates of divergence reported for specialized bees of the genera Xenoglossa and Peponapis, suggesting a process of coevolution between Cucurbita and their main pollinators that should be further investigated. Tests of environmental differentiation together with ancestral area reconstruction and species distribution models past projections suggest that divergence was promoted by the onset of geographic barriers and secondary range contraction and by expansion related to glacial-interglacial cycles.


Assuntos
Cucurbita/classificação , Ecossistema , Filogenia , Filogeografia , Biodiversidade , Cloroplastos/genética , Análise de Componente Principal , Fatores de Tempo
9.
Front Plant Sci ; 9: 400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29662500

RESUMO

Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies' distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low levels of gene flow among populations at a regional scale (<0.01), except for the Yucatan Peninsula, and the northern portion of the Pacific Coast. Our analyses suggested that the Isthmus of Tehuantepec is an effective barrier isolating southern populations. Our SDM results indicate that environmental characteristics in the Balsas-Jalisco region, a potential center of domestication, were suitable for the presence of sororia during the Holocene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA