Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110926

RESUMO

Composition analysis at the nm-scale, marking the onset of clustering in bulk metallic glasses, can aid the understanding and further optimization of additive manufacturing processes. By atom probe tomography, it is challenging to differentiate nm-scale segregations from random fluctuations. This ambiguity is due to the limited spatial resolution and detection efficiency. Cu and Zr were selected as model systems since the spatial distributions of the isotopes therein constitute ideal solid solutions, as the mixing enthalpy is, by definition, zero. Close agreement is observed between the simulated and measured spatial distributions of the isotopes. Having established the signature of a random distribution of atoms, the elemental distribution in amorphous Zr59.3Cu28.8Al10.4Nb1.5 samples fabricated by laser powder bed fusion is analyzed. By comparison with the length scales of spatial isotope distributions, the probed volume of the bulk metallic glass shows a random distribution of all constitutional elements, and no evidence for clustering is observed. However, heat-treated metallic glass samples clearly exhibit elemental segregation which increases in size with annealing time. Segregations in Zr59.3Cu28.8Al10.4Nb1.5 > 1 nm can be observed and separated from random fluctuations, while accurate determination of segregations < 1 nm in size are limited by spatial resolution and detection efficiency.

2.
Sci Rep ; 11(1): 17454, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465858

RESUMO

Magnesium-based lightweight structural materials exhibit potential for energy savings. However, the state-of-the-art quest for novel compositions with improved properties through conventional bulk metallurgy is time, energy, and material intensive. Here, the opportunities provided by combinatorial thin film materials design for the sustainable development of magnesium alloys are evaluated. To characterise the impurity level of (Mg,Ca) solid solution thin films within grains and grain boundaries, scanning transmission electron microscopy and atom probe tomography are correlatively employed. It is demonstrated that control of the microstructure enables impurity levels similar to bulk-processed alloys. In order to substantially reduce time, energy, and material requirements for the sustainable development of magnesium alloys, we propose a three-stage materials design strategy: (1) Efficient and systematic investigation of composition-dependent phase formation by combinatorial film growth. (2) Correlation of microstructural features and mechanical properties for selected composition ranges by rapid alloy prototyping. (3) Establishment of synthesis-microstructure-property relationships by conventional bulk metallurgy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA