Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
NPJ Digit Med ; 7(1): 110, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698139

RESUMO

Deep learning approaches for clinical predictions based on magnetic resonance imaging data have shown great promise as a translational technology for diagnosis and prognosis in neurological disorders, but its clinical impact has been limited. This is partially attributed to the opaqueness of deep learning models, causing insufficient understanding of what underlies their decisions. To overcome this, we trained convolutional neural networks on structural brain scans to differentiate dementia patients from healthy controls, and applied layerwise relevance propagation to procure individual-level explanations of the model predictions. Through extensive validations we demonstrate that deviations recognized by the model corroborate existing knowledge of structural brain aberrations in dementia. By employing the explainable dementia classifier in a longitudinal dataset of patients with mild cognitive impairment, we show that the spatially rich explanations complement the model prediction when forecasting transition to dementia and help characterize the biological manifestation of disease in the individual brain. Overall, our work exemplifies the clinical potential of explainable artificial intelligence in precision medicine.

2.
Elife ; 122024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602745

RESUMO

Human fetal development has been associated with brain health at later stages. It is unknown whether growth in utero, as indexed by birth weight (BW), relates consistently to lifespan brain characteristics and changes, and to what extent these influences are of a genetic or environmental nature. Here we show remarkably stable and lifelong positive associations between BW and cortical surface area and volume across and within developmental, aging and lifespan longitudinal samples (N = 5794, 4-82 y of age, w/386 monozygotic twins, followed for up to 8.3 y w/12,088 brain MRIs). In contrast, no consistent effect of BW on brain changes was observed. Partly environmental effects were indicated by analysis of twin BW discordance. In conclusion, the influence of prenatal growth on cortical topography is stable and reliable through the lifespan. This early-life factor appears to influence the brain by association of brain reserve, rather than brain maintenance. Thus, fetal influences appear omnipresent in the spacetime of the human brain throughout the human lifespan. Optimizing fetal growth may increase brain reserve for life, also in aging.


Assuntos
Feto , Longevidade , Feminino , Gravidez , Humanos , Encéfalo/diagnóstico por imagem , Envelhecimento , Peso ao Nascer
3.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496633

RESUMO

Structural brain changes underly cognitive changes in older age and contribute to inter-individual variability in cognition. Here, we assessed how changes in cortical thickness, surface area, and subcortical volume, are related to cognitive change in cognitively unimpaired older adults using structural magnetic resonance imaging (MRI) data-driven clustering. Specifically, we tested (1) which brain structural changes over time predict cognitive change in older age (2) whether these are associated with core cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers phosphorylated tau (p-tau) and amyloid-ß (Aß42), and (3) the degree of overlap between clusters derived from different structural features. In total 1899 cognitively healthy older adults (50 - 93 years) were followed up to 16 years with neuropsychological and structural MRI assessments, a subsample of which (n = 612) had CSF p-tau and Aß42 measurements. We applied Monte-Carlo Reference-based Consensus clustering to identify subgroups of older adults based on structural brain change patterns over time. Four clusters for each brain feature were identified, representing the degree of longitudinal brain decline. Each brain feature provided a unique contribution to brain aging as clusters were largely independent across modalities. Cognitive change and baseline cognition were best predicted by cortical area change, whereas higher levels of p-tau and Aß42 were associated with changes in subcortical volume. These results provide insights into the link between changes in brain morphology and cognition, which may translate to a better understanding of different aging trajectories.

4.
Nat Hum Behav ; 7(11): 2008-2022, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798367

RESUMO

Short sleep is held to cause poorer brain health, but is short sleep associated with higher rates of brain structural decline? Analysing 8,153 longitudinal MRIs from 3,893 healthy adults, we found no evidence for an association between sleep duration and brain atrophy. In contrast, cross-sectional analyses (51,295 observations) showed inverse U-shaped relationships, where a duration of 6.5 (95% confidence interval, (5.7, 7.3)) hours was associated with the thickest cortex and largest volumes relative to intracranial volume. This fits converging evidence from research on mortality, health and cognition that points to roughly seven hours being associated with good health. Genome-wide association analyses suggested that genes associated with longer sleep for below-average sleepers were linked to shorter sleep for above-average sleepers. Mendelian randomization did not yield evidence for causal impacts of sleep on brain structure. The combined results challenge the notion that habitual short sleep causes brain atrophy, suggesting that normal brains promote adequate sleep duration-which is shorter than current recommendations.


Assuntos
Duração do Sono , Transtornos do Sono-Vigília , Adulto , Humanos , Estudos Transversais , Estudo de Associação Genômica Ampla , Encéfalo/diagnóstico por imagem , Transtornos do Sono-Vigília/diagnóstico por imagem , Transtornos do Sono-Vigília/genética , Atrofia
5.
Neuroimage ; 279: 120309, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544416

RESUMO

Memory encoding and retrieval are critical sub-processes of episodic memory. While the hippocampus is involved in both, less is known about its connectivity with the neocortex during memory processing in humans. This is partially due to variations in demands in common memory tasks, which inevitably recruit cognitive processes other than episodic memory. Conjunctive analysis of data from different tasks with the same core elements of encoding and retrieval can reduce the intrusion of patterns related to subsidiary perceptual and cognitive processing. Leveraging data from two large-scale functional resonance imaging studies with different episodic memory tasks (514 and 237 participants), we identified hippocampal-cortical networks active during memory tasks. Whole-brain functional connectivity maps were similar during resting state, encoding, and retrieval. Anterior and posterior hippocampus had distinct connectivity profiles, which were also stable across resting state and memory tasks. When contrasting encoding and retrieval connectivity, conjunctive encoding-related connectivity was sparse. During retrieval hippocampal connectivity was increased with areas known to be active during recollection, including medial prefrontal, inferior parietal, and parahippocampal cortices. This indicates that the stable functional connectivity of the hippocampus along its longitudinal axis is superposed by increased functional connectivity with the recollection network during retrieval, while auxiliary encoding connectivity likely reflects contextual factors.


Assuntos
Memória Episódica , Neocórtex , Humanos , Rememoração Mental , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem
6.
Brain Behav Immun ; 113: 56-65, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37400002

RESUMO

Concentrations of pro-inflammatory cytokines -interleukin-6 (IL-6) and interleukin-8 (IL-8) - are increased with age and in Alzheimer's disease (AD). It is not clear whether concentrations of IL-6 and IL-8 in the central nervous system predict later brain and cognitive changes over time nor whether this relationship is mediated by core AD biomarkers. Here, 219 cognitively healthy older adults (62-91 years), with baseline cerebrospinal fluid (CSF) measures of IL-6 and IL-8 were followed over time - up to 9 years - with assessments that included cognitive function, structural magnetic resonance imaging, and CSF measurements of phosphorylated tau (p-tau) and amyloid-ß (Aß-42) concentrations (for a subsample). Higher baseline CSF IL-8 was associated with better memory performance over time in the context of lower levels of CSF p-tau and p-tau/Aß-42 ratio. Higher CSF IL-6 was related to less CSF p-tau changes over time. The results are in line with the hypothesis suggesting that an up-regulation of IL-6 and IL-8 in the brain may play a neuroprotective role in cognitively healthy older adults with lower load of AD pathology.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/patologia , Interleucina-6 , Interleucina-8 , Proteínas tau/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Encéfalo/patologia , Biomarcadores/líquido cefalorraquidiano , Atrofia/patologia , Transtornos da Memória/patologia , Disfunção Cognitiva/patologia , Fragmentos de Peptídeos/líquido cefalorraquidiano
7.
J Neurosci ; 43(28): 5241-5250, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37365003

RESUMO

Many sleep less than recommended without experiencing daytime sleepiness. According to prevailing views, short sleep increases risk of lower brain health and cognitive function. Chronic mild sleep deprivation could cause undetected sleep debt, negatively affecting cognitive function and brain health. However, it is possible that some have less sleep need and are more resistant to negative effects of sleep loss. We investigated this using a cross-sectional and longitudinal sample of 47,029 participants of both sexes (20-89 years) from the Lifebrain consortium, Human Connectome project (HCP) and UK Biobank (UKB), with measures of self-reported sleep, including 51,295 MRIs of the brain and cognitive tests. A total of 740 participants who reported to sleep <6 h did not experience daytime sleepiness or sleep problems/disturbances interfering with falling or staying asleep. These short sleepers showed significantly larger regional brain volumes than both short sleepers with daytime sleepiness and sleep problems (n = 1742) and participants sleeping the recommended 7-8 h (n = 3886). However, both groups of short sleepers showed slightly lower general cognitive function (GCA), 0.16 and 0.19 SDs, respectively. Analyses using accelerometer-estimated sleep duration confirmed the findings, and the associations remained after controlling for body mass index, depression symptoms, income, and education. The results suggest that some people can cope with less sleep without obvious negative associations with brain morphometry and that sleepiness and sleep problems may be more related to brain structural differences than duration. However, the slightly lower performance on tests of general cognitive abilities warrants closer examination in natural settings.SIGNIFICANCE STATEMENT Short habitual sleep is prevalent, with unknown consequences for brain health and cognitive performance. Here, we show that daytime sleepiness and sleep problems are more strongly related to regional brain volumes than sleep duration. However, participants sleeping ≤6 h had slightly lower scores on tests of general cognitive function (GCA). This indicates that sleep need is individual and that sleep duration per se is very weakly if at all related brain health, while daytime sleepiness and sleep problems may show somewhat stronger associations. The association between habitual short sleep and lower scores on tests of general cognitive abilities must be further scrutinized in natural settings.


Assuntos
Distúrbios do Sono por Sonolência Excessiva , Transtornos do Sono-Vigília , Masculino , Feminino , Humanos , Estudos Transversais , Encéfalo/diagnóstico por imagem , Sono , Privação do Sono/diagnóstico por imagem , Transtornos do Sono-Vigília/complicações , Cognição , Distúrbios do Sono por Sonolência Excessiva/complicações , Distúrbios do Sono por Sonolência Excessiva/diagnóstico
8.
PLoS Comput Biol ; 19(4): e1010995, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068117

RESUMO

Our understanding of how speed and persistence of cell migration affects the growth rate and size of tumors remains incomplete. To address this, we developed a mathematical model wherein cells migrate in two-dimensional space, divide, die or intravasate into the vasculature. Exploring a wide range of speed and persistence combinations, we find that tumor growth positively correlates with increasing speed and higher persistence. As a biologically relevant example, we focused on Golgi fragmentation, a phenomenon often linked to alterations of cell migration. Golgi fragmentation was induced by depletion of Giantin, a Golgi matrix protein, the downregulation of which correlates with poor patient survival. Applying the experimentally obtained migration and invasion traits of Giantin depleted breast cancer cells to our mathematical model, we predict that loss of Giantin increases the number of intravasating cells. This prediction was validated, by showing that circulating tumor cells express significantly less Giantin than primary tumor cells. Altogether, our computational model identifies cell migration traits that regulate tumor progression and uncovers a role of Giantin in breast cancer progression.


Assuntos
Neoplasias da Mama , Proteínas de Membrana , Humanos , Feminino , Proteínas de Membrana/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Neoplasias da Mama/metabolismo , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia
9.
Psychometrika ; 88(2): 456-486, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36976415

RESUMO

We present generalized additive latent and mixed models (GALAMMs) for analysis of clustered data with responses and latent variables depending smoothly on observed variables. A scalable maximum likelihood estimation algorithm is proposed, utilizing the Laplace approximation, sparse matrix computation, and automatic differentiation. Mixed response types, heteroscedasticity, and crossed random effects are naturally incorporated into the framework. The models developed were motivated by applications in cognitive neuroscience, and two case studies are presented. First, we show how GALAMMs can jointly model the complex lifespan trajectories of episodic memory, working memory, and speed/executive function, measured by the California Verbal Learning Test (CVLT), digit span tests, and Stroop tests, respectively. Next, we study the effect of socioeconomic status on brain structure, using data on education and income together with hippocampal volumes estimated by magnetic resonance imaging. By combining semiparametric estimation with latent variable modeling, GALAMMs allow a more realistic representation of how brain and cognition vary across the lifespan, while simultaneously estimating latent traits from measured items. Simulation experiments suggest that model estimates are accurate even with moderate sample sizes.


Assuntos
Encéfalo , Cognição , Psicometria , Simulação por Computador , Fenótipo , Estudos Longitudinais
10.
Sci Rep ; 12(1): 13886, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974034

RESUMO

Higher general cognitive ability (GCA) is associated with lower risk of neurodegenerative disorders, but neural mechanisms are unknown. GCA could be associated with more cortical tissue, from young age, i.e. brain reserve, or less cortical atrophy in adulthood, i.e. brain maintenance. Controlling for education, we investigated the relative association of GCA with reserve and maintenance of cortical volume, -area and -thickness through the adult lifespan, using multiple longitudinal cognitively healthy brain imaging cohorts (n = 3327, 7002 MRI scans, baseline age 20-88 years, followed-up for up to 11 years). There were widespread positive relationships between GCA and cortical characteristics (level-level associations). In select regions, higher baseline GCA was associated with less atrophy over time (level-change associations). Relationships remained when controlling for polygenic scores for both GCA and education. Our findings suggest that higher GCA is associated with cortical volumes by both brain reserve and -maintenance mechanisms through the adult lifespan.


Assuntos
Cognição , Reserva Cognitiva , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Atrofia , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Adulto Jovem
11.
Sci Rep ; 12(1): 7877, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551208

RESUMO

While immediate effects of memory-training are widely reported in young and older adults, less is known regarding training-dependent hippocampal plasticity across multiple intervention phases, and long-term maintenance of such. Here, 157 healthy young and older adults underwent a training-intervention including two 10 weeks periods of episodic-memory training, separated by two 2 weeks periods of no training. Both age groups showed improvements on a criterion task, which prevailed after 3 years. When compared to the reference condition of no training, relative increases in hippocampal volume were observed after the training across age groups, which were maintained after 10 weeks periods of no training. However, there was age-group dependent temporal variation with respect to timing of effects. Hippocampal volume of the training group did not differ from that of a passive control-group 3 years after the intervention. The young showed an immediate near-transfer effect on a word-association task. We show that training-gains on memory performance can prevail for at least 3 years. Memory training can induce increases in hippocampal volume immediately after the intervention and after months. Episodic-memory training can produce transfer effects to a non-trained memory task in young adults. However, maintained effects on hippocampal volume beyond 10 weeks are uncertain, and likely require continuous training.


Assuntos
Memória Episódica , Memória de Curto Prazo , Idoso , Pré-Escolar , Cognição , Hipocampo/diagnóstico por imagem , Humanos , Lactente , Aprendizagem , Adulto Jovem
12.
Neurobiol Aging ; 116: 80-91, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584575

RESUMO

It is unclear whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration predict brain atrophy in cognitively healthy older adults, whether these associations can be explained by phosphorylated tau181 (p-tau) and the 42 amino acid form of amyloid-ß (Aß42) biomarkers, and which neural substrates may drive these associations. We addressed these questions in 2 samples of cognitively healthy older adults who underwent longitudinal structural MRI up to 7 years and had baseline CSF levels of heart-type fatty-acid binding protein (FABP3)=, total-tau, neurogranin, and neurofilament light (NFL) (n = 189, scans = 721). The results showed that NFL, total-tau, and FABP3 predicted entorhinal thinning and hippocampal atrophy. Brain atrophy was not moderated by Aß42 and the associations between NFL and FABP3 with brain atrophy were independent of p-tau. The spatial pattern of cortical atrophy associated with the biomarkers overlapped with neurogenetic profiles associated with expression in the axonal (total-tau, NFL) and dendritic (neurogranin) components. CSF biomarkers of neurodegeneration are useful for predicting specific features of brain atrophy in older adults, independently of amyloid and tau pathology biomarkers.


Assuntos
Doença de Alzheimer , Neurogranina , Idoso , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Atrofia/patologia , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Humanos , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Neurogranina/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano
13.
Neuroimage ; 256: 119210, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35462035

RESUMO

The discrepancy between chronological age and the apparent age of the brain based on neuroimaging data - the brain age delta - has emerged as a reliable marker of brain health. With an increasing wealth of data, approaches to tackle heterogeneity in data acquisition are vital. To this end, we compiled raw structural magnetic resonance images into one of the largest and most diverse datasets assembled (n=53542), and trained convolutional neural networks (CNNs) to predict age. We achieved state-of-the-art performance on unseen data from unknown scanners (n=2553), and showed that higher brain age delta is associated with diabetes, alcohol intake and smoking. Using transfer learning, the intermediate representations learned by our model complemented and partly outperformed brain age delta in predicting common brain disorders. Our work shows we can achieve generalizable and biologically plausible brain age predictions using CNNs trained on heterogeneous datasets, and transfer them to clinical use cases.


Assuntos
Encéfalo , Redes Neurais de Computação , Envelhecimento , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem
15.
BMJ Open ; 12(4): e057999, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35437254

RESUMO

OBJECTIVES: To investigate public perspectives on brain health. DESIGN: Cross-sectional multilanguage online survey. SETTING: Lifebrain posted the survey on its website and social media and shared it with stakeholders. The survey was open from 4 June 2019 to 31 August 2020. PARTICIPANTS: n=27 590 aged ≥18 years from 81 countries in five continents completed the survey. The respondents were predominantly women (71%), middle aged (41-60 years; 37%) or above (>60 years; 46%), highly educated (69%) and resided in Europe (98%). MAIN OUTCOME MEASURES: Respondents' views were assessed regarding factors that may influence brain health, life periods considered important to look after the brain and diseases and disorders associated with the brain. We run exploratory linear models at a 99% level of significance to assess correlates of the outcome variables, adjusting for likely confounders in a targeted fashion. RESULTS: Of all significant effects, the respondents recognised the impact of lifestyle factors on brain health but had relatively less awareness of the role socioeconomic factors might play. Most respondents rated all life periods as important for the brain (95%-96%), although the prenatal period was ranked significantly lower (84%). Equally, women and highly educated respondents more often rated factors and life periods to be important for brain health. Ninety-nine per cent of respondents associated Alzheimer's disease and dementia with the brain. The respondents made a connection between mental health and the brain, and mental disorders such as schizophrenia and depression were significantly more often considered to be associated with the brain than neurological disorders such as stroke and Parkinson's disease. Few respondents (<32%) associated cancer, hypertension, diabetes and arthritis with the brain. CONCLUSIONS: Differences in perceptions of brain health were noted among specific segments of the population. Policies providing information about brain-friendly health behaviours and targeting people less likely to have relevant experience may be needed.


Assuntos
Encéfalo , Opinião Pública , Adolescente , Adulto , Estudos Transversais , Feminino , Humanos , Estilo de Vida , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários
17.
Cereb Cortex ; 32(4): 839-854, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34467389

RESUMO

Higher socio-economic status (SES) has been proposed to have facilitating and protective effects on brain and cognition. We ask whether relationships between SES, brain volumes and cognitive ability differ across cohorts, by age and national origin. European and US cohorts covering the lifespan were studied (4-97 years, N = 500 000; 54 000 w/brain imaging). There was substantial heterogeneity across cohorts for all associations. Education was positively related to intracranial (ICV) and total gray matter (GM) volume. Income was related to ICV, but not GM. We did not observe reliable differences in associations as a function of age. SES was more strongly related to brain and cognition in US than European cohorts. Sample representativity varies, and this study cannot identify mechanisms underlying differences in associations across cohorts. Differences in neuroanatomical volumes partially explained SES-cognition relationships. SES was more strongly related to ICV than to GM, implying that SES-cognition relations in adulthood are less likely grounded in neuroprotective effects on GM volume in aging. The relatively stronger SES-ICV associations rather are compatible with SES-brain volume relationships being established early in life, as ICV stabilizes in childhood. The findings underscore that SES has no uniform association with, or impact on, brain and cognition.


Assuntos
Encéfalo , Longevidade , Adulto , Encéfalo/diagnóstico por imagem , Cognição , Substância Cinzenta/diagnóstico por imagem , Humanos , Classe Social
18.
Elife ; 102021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34756163

RESUMO

Brain age is a widely used index for quantifying individuals' brain health as deviation from a normative brain aging trajectory. Higher-than-expected brain age is thought partially to reflect above-average rate of brain aging. Here, we explicitly tested this assumption in two independent large test datasets (UK Biobank [main] and Lifebrain [replication]; longitudinal observations ≈ 2750 and 4200) by assessing the relationship between cross-sectional and longitudinal estimates of brain age. Brain age models were estimated in two different training datasets (n ≈ 38,000 [main] and 1800 individuals [replication]) based on brain structural features. The results showed no association between cross-sectional brain age and the rate of brain change measured longitudinally. Rather, brain age in adulthood was associated with the congenital factors of birth weight and polygenic scores of brain age, assumed to reflect a constant, lifelong influence on brain structure from early life. The results call for nuanced interpretations of cross-sectional indices of the aging brain and question their validity as markers of ongoing within-person changes of the aging brain. Longitudinal imaging data should be preferred whenever the goal is to understand individual change trajectories of brain and cognition in aging.


Scientists who study the brain and aging are keen to find an effective way to measure brain health, which could help identify people at risk for dementia or memory problems. One popular marker is 'brain age'. This measurement uses a brain scan to estimate a person's chronological age, then compares the estimated brain age to the person's actual age to determine whether their brain is aging faster or slower than expected for their age. However, since brain age relies on one brain scan taken at one point in time, it is not clear whether it really measures brain aging or if it might capture brain differences that have been present throughout the individual's life. Studies comparing individual brain scans over several years would be necessary to know for sure. Now, Vidal-Piñeiro et al. show that the brain-age measurement does not reflect faster brain aging. In the experiments, the researchers compared repeated brain scans of thousands of individuals over 40 years of age. The experiments showed that deviations from normative brain age detected in a single scan reflected early life differences more than changes in the brain over time. For example, people with older-looking brains were more likely to have had a low birth weight or to have a combination of genes associated with having an older looking brain. Vidal-Piñeiro et al. show that brain age mostly reflects a pre-existing brain condition rather than brain aging. The experiments also suggest that genetics and early brain development likely have a strong impact on brain health throughout life. Future studies trying to test or develop brain-aging measurements should use serial measurements to track brain changes over time.


Assuntos
Envelhecimento/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Genótipo , Envelhecimento/genética , Peso ao Nascer , Estudos Transversais , Estudo de Associação Genômica Ampla , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética
19.
Dev Cogn Neurosci ; 51: 100997, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34392161

RESUMO

Working memory (WM) supports several higher-level cognitive abilities, yet we know less about factors associated with development and decline in WM compared to other cognitive processes. Here, we investigated lifespan changes in WM capacity and their structural brain correlates, using a longitudinal sample including 2358 magnetic resonance imaging (MRI) scans and WM scores from 1656 participants (4.4-86.4 years, mean follow-up interval 4.3 years). 8764 participants (9.0-10.9 years) with MRI, WM scores and genetic information from the Adolescent Brain Cognitive Development study were used for follow-up analyses. Results showed that both the information manipulation component and the storage component of WM improved during childhood and adolescence, but the age-decline could be fully explained by reductions in passive storage capacity alone. Greater WM function in development was related to apparent thinner cortex in both samples, also when general cognitive function was accounted for. The same WM-apparent thickness relationship was found for young adults. The WM-thickness relationships could not be explained by SNP-based co-heritability or by socioeconomic status. A larger sample with genetic information may be necessary to disentangle the true gene-environment effects. In conclusion, WM capacity changes greatly through life and has anatomically extended rather than function-specific structural cortical correlates.


Assuntos
Longevidade , Memória de Curto Prazo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Encéfalo , Criança , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Classe Social , Adulto Jovem
20.
Elife ; 102021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34180395

RESUMO

Development and aging of the cerebral cortex show similar topographic organization and are governed by the same genes. It is unclear whether the same is true for subcortical regions, which follow fundamentally different ontogenetic and phylogenetic principles. We tested the hypothesis that genetically governed neurodevelopmental processes can be traced throughout life by assessing to which degree brain regions that develop together continue to change together through life. Analyzing over 6000 longitudinal MRIs of the brain, we used graph theory to identify five clusters of coordinated development, indexed as patterns of correlated volumetric change in brain structures. The clusters tended to follow placement along the cranial axis in embryonic brain development, suggesting continuity from prenatal stages, and correlated with cognition. Across independent longitudinal datasets, we demonstrated that developmental clusters were conserved through life. Twin-based genetic correlations revealed distinct sets of genes governing change in each cluster. Single-nucleotide polymorphisms-based analyses of 38,127 cross-sectional MRIs showed a similar pattern of genetic volume-volume correlations. In conclusion, coordination of subcortical change adheres to fundamental principles of lifespan continuity and genetic organization.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Longevidade , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA