Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Trends Microbiol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38580606

RESUMO

Tailocins are high-molecular-weight bacteriocins produced by bacteria to kill related environmental competitors by binding and puncturing their target. Tailocins are promising alternative antimicrobials, yet the diversity of naturally occurring tailocins is limited. The structural similarities between phage tails and tailocins advocate using phages as scaffolds for developing new tailocins. This article reviews three strategies for producing tailocins: disrupting the capsid-tail junction of phage particles, blocking capsid assembly during phage propagation, and creating headless phage particles synthetically. Particularly appealing is the production of tailocins through synthetic biology using phages with contractile tails as scaffolds to unlock the antimicrobial potential of tailocins.

2.
Curr Opin Microbiol ; 78: 102451, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38452595

RESUMO

Many bacteriophages (phages) interact with flagella and rely on bacterial motility for successful infection of their hosts. Yet, limited information is available on how phages have evolved to recognize and bind both flagella and subsequent surface receptors for phage DNA injection. Here, we present an update on the current knowledge of flagellotropic phages using a few well-studied phages as examples to unravel the molecular details of bacterial host recognition. We discuss the recent advances in the role of globular exposed flagellin domains and flagella glycosylation in phage binding to the flagella. In addition, we present diverse types of surface receptors and phage components responsible for the interaction with the host. Finally, we point to questions remaining to be answered and new approaches to study this unique group of phages.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Flagelos/genética , Flagelos/metabolismo
3.
iScience ; 27(2): 108826, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38322997

RESUMO

Novel solutions are needed to reduce the risk of transmission of extended spectrum ß-lactamase (ESBL) and AmpC ß-lactamase producing Escherichia coli (ESBL/AmpC E. coli) from livestock to humans. Given that phages are promising biocontrol agents, a collection of 28 phages that infect ESBL/AmpC E. coli were established. Whole genome sequencing showed that all these phages were unique and could be assigned to 15 different genera. Host range analysis showed that 82% of 198 strains, representing the genetic diversity of ESBL/AmpC E. coli, were sensitive to at least one phage. Identifying receptors used for phage binding experimentally as well as in silico predictions, allowed us to combine phages into two different cocktails with broad host range targeting diverse receptors. These phage cocktails efficiently inhibit the growth of ESBL/AmpC E. coli in vitro, thus suggesting the potential of phages as promising biocontrol agents.

4.
Microlife ; 5: uqad047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234449

RESUMO

Bacteriophages in the Agtrevirus genus are known for expressing multiple tail spike proteins (TSPs), but little is known about their genetic diversity and host recognition apart from their ability to infect diverse Enterobacteriaceae species. Here, we aim to determine the genetic differences that may account for the diverse host ranges of Agrevirus phages. We performed comparative genomics of 14 Agtrevirus and identified only a few genetic differences including genes involved in nucleotide metabolism. Most notably was the diversity of the tsp gene cluster, specifically in the receptor-binding domains that were unique among most of the phages. We further characterized agtrevirus AV101 infecting nine diverse Extended Spectrum ß-lactamase (ESBL) Escherichia coli and demonstrated that this phage encoded four unique TSPs among Agtrevirus. Purified TSPs formed translucent zones and inhibited AV101 infection of specific hosts, demonstrating that TSP1, TSP2, TSP3, and TSP4 recognize O8, O82, O153, and O159 O-antigens of E. coli, respectively. BLASTp analysis showed that the receptor-binding domain of TSP1, TSP2, TSP3, and TSP4 are similar to TSPs encoded by E. coli prophages and distant related virulent phages. Thus, Agtrevirus may have gained their receptor-binding domains by recombining with prophages or virulent phages. Overall, combining bioinformatic and biological data expands the understanding of TSP host recognition of Agtrevirus and give new insight into the origin and acquisition of receptor-binding domains of Ackermannviridae phages.

5.
Phage (New Rochelle) ; 4(1): 35-45, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37214655

RESUMO

Introduction: Extended-spectrum ß-lactamase (ESBL)- and AmpC ß-lactamase (AmpC)-producing Escherichia coli from livestock and meat represent a zoonotic risk and biocontrol solutions are needed to prevent transmission to humans. Methods: In this study, we established a representative collection of animal-origin ESBL/AmpC E. coli as target to test the antimicrobial potential of bacteriophages. Results: Bioinformatic analysis of whole-genome sequence data of 198 ESBL/AmpC E. coli from pigs, broilers, and broiler meat identified strains belonging to all known E. coli phylogroups and 65 multilocus sequence types. Various ESBL/AmpC genes and plasmid types were detected with expected source-specific patterns. Plaque assay using 15 phages previously isolated using the E. coli reference collection demonstrated that Warwickvirus phages showed the broadest host range, killing up to 26 strains. Conclusions: 154/198 strains were resistant to infection by all phages tested, suggesting a need for isolating phages specific for ESBL/AmpC E. coli. The strain collection described in this study is a useful resource fulfilling such need.

6.
Microbiol Resour Announc ; 11(10): e0060822, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36169315

RESUMO

Escherichia coli is a highly diverse bacterial species comprising both commensal and pathogenic strains. Here, we report complete genome sequences of 16 E. coli bacteriophages isolated from various environmental samples using the ECOR collection as isolation hosts.

7.
Front Microbiol ; 12: 780559, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970240

RESUMO

Phages infecting Campylobacter jejuni are considered a promising intervention strategy at broiler farms, yet phage sensitivity of naturally occurring poultry isolates is not well studied. Here, we investigated phage sensitivity and identified resistance mechanisms of C. jejuni strains originating from Danish broilers belonging to the most prevalent MLST (ST) types. Determining plaque formation of 51 phages belonging to Fletchervirus or Firehammervirus showed that 21 out of 31 C. jejuni strains were susceptible to at least one phage. While C. jejuni ST-21 strains encoded the common phase variable O-methyl phosphoramidate (MeOPN) receptor of the Fletchervirus and were only infected by these phages, ST-45 strains did not encode this receptor and were exclusively infected by Firehammervirus phages. To identify internal phage resistance mechanism in ST-21 strains, we performed comparative genomics of two strains, CAMSA2002 sensitive to almost all Fletchervirus phages and CAMSA2038, resistant to all 51 phages. The strains encoded diverse clustered regularly interspaced short palindromic repeats (CRISPR) spacers but none matched the tested phages. Sequence divergence was also observed in a predicted SspE homolog and putative restriction modification systems including a methyl-specific McrBC endonuclease. Furthermore, when mcrB was deleted, CAMSA2038 became sensitive to 17 out of 43 phages, three being Firehammervirus phages that otherwise did not infect any ST-21 strains. Yet, 16 phages demonstrated significantly lower efficiencies of plating on the mcrB mutant suggesting additional resistance mechanism still restricting phage propagation in CAMSA2038. Thus, our work demonstrates that C. jejuni isolates originating from broilers may have acquired several resistance mechanisms to successfully prevent phage infection in their natural habitat.

8.
Comput Struct Biotechnol J ; 19: 4854-4867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527194

RESUMO

Phages belonging to the Ackermannviridae family encode up to four tail spike proteins (TSPs), each recognizing a specific receptor of their bacterial hosts. Here, we determined the TSPs diversity of 99 Ackermannviridae phages by performing a comprehensive in silico analysis. Based on sequence diversity, we assigned all TSPs into distinctive subtypes of TSP1, TSP2, TSP3 and TSP4, and found each TSP subtype to be specifically associated with the genera (Kuttervirus, Agtrevirus, Limestonevirus, Taipeivirus) of the Ackermannviridae family. Further analysis showed that the N-terminal XD1 and XD2 domains in TSP2 and TSP4, hinging the four TSPs together, are preserved. In contrast, the C-terminal receptor binding modules were only conserved within TSP subtypes, except for some Kuttervirus TSP1s and TSP3s that were similar to specific TSP4s. A conserved motif in TSP1, TSP3 and TSP4 of Kuttervirus phages may allow recombination between receptor binding modules, thus altering host recognition. The receptors for numerous uncharacterized phages expressing TSPs in the same subtypes were predicted using previous host range data. To validate our predictions, we experimentally determined the host recognition of three of the four TSPs expressed by kuttervirus S117. We confirmed that S117 TSP1 and TSP2 bind to their predicted host receptors, and identified the receptor for TSP3, which is shared by 51 other Kuttervirus phages. Kuttervirus phages were thus shown encode a vast genetic diversity of potentially exchangeable TSPs influencing host recognition. Overall, our study demonstrates that comprehensive in silico and host range analysis of TSPs can predict host recognition of Ackermannviridae phages.

9.
Cell Rep ; 35(10): 109214, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107245

RESUMO

Phase variation is a common mechanism for creating phenotypic heterogeneity of surface structures in bacteria important for niche adaptation. In Campylobacter, phase variation occurs by random variation in hypermutable homonucleotide 7-11 G (polyG) tracts. To elucidate how phages adapt to phase-variable hosts, we study Fletchervirus phages infecting Campylobacter dependent on a phase-variable receptor. Our data demonstrate that Fletcherviruses mimic their host and encode hypermutable polyG tracts, leading to phase-variable expression of two of four receptor-binding proteins. This creates phenotypically diverse phage populations, including a sub-population that infects the bacterial host when the phase-variable receptor is not expressed. Such population dynamics of both phage and host promote co-existence in a shared niche. Strikingly, we identify polyG tracts in more than 100 phage genera, infecting more than 70 bacterial species. Future experimental work may confirm phase variation as a widespread strategy for creating phenotypically diverse phage populations.


Assuntos
Infecções Bacterianas/microbiologia , Bacteriófagos/química , Campylobacter/química , Fenótipo
10.
Front Microbiol ; 12: 619028, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597938

RESUMO

Campylobacter contaminated poultry remains the major cause of foodborne gastroenteritis worldwide, calling for novel antibacterials. We previously developed the concept of Innolysin composed of an endolysin fused to a phage receptor binding protein (RBP) and provided the proof-of-concept that Innolysins exert bactericidal activity against Escherichia coli. Here, we have expanded the Innolysin concept to target Campylobacter jejuni. As no C. jejuni phage RBP had been identified so far, we first showed that the H-fiber originating from a CJIE1-like prophage of C. jejuni CAMSA2147 functions as a novel RBP. By fusing this H-fiber to phage T5 endolysin, we constructed Innolysins targeting C. jejuni (Innolysins Cj). Innolysin Cj1 exerts antibacterial activity against diverse C. jejuni strains after in vitro exposure for 45 min at 20°C, reaching up to 1.30 ± 0.21 log reduction in CAMSA2147 cell counts. Screening of a library of Innolysins Cj composed of distinct endolysins for growth inhibition, allowed us to select Innolysin Cj5 as an additional promising antibacterial candidate. Application of either Innolysin Cj1 or Innolysin Cj5 on chicken skin refrigerated to 5°C and contaminated with C. jejuni CAMSA2147 led to 1.63 ± 0.46 and 1.18 ± 0.10 log reduction of cells, respectively, confirming that Innolysins Cj can kill C. jejuni in situ. The receptor of Innolysins Cj remains to be identified, however, the RBP component (H-fiber) recognizes a novel receptor compared to lytic phages binding to capsular polysaccharide or flagella. Identification of other unexplored Campylobacter phage RBPs may further increase the repertoire of new Innolysins Cj targeting distinct receptors and working as antibacterials against Campylobacter.

11.
Sci Rep ; 10(1): 12087, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694655

RESUMO

Bacteriophage-encoded endolysins degrading the bacterial peptidoglycan are promising antibacterials for combating antibiotic-resistant bacteria. However, endolysins have limited use against Gram-negative bacteria, since the outer membrane prevents access to the peptidoglycan. Here, we present Innolysins, an innovative concept for engineering endolysins to exert antibacterial activity against Gram-negative bacteria. Innolysins combine the enzymatic activity of endolysins with the binding capacity of phage receptor binding proteins (RBPs). As proof-of-concept, we constructed 12 Innolysins by fusing phage T5 endolysin and RBP Pb5 in different configurations. One of these, Innolysin Ec6 displayed antibacterial activity against Escherichia coli only in the presence of Pb5 receptor FhuA, leading to 1.22 ± 0.12 log reduction in cell counts. Accordingly, other bacterial species carrying FhuA homologs such as Shigella sonnei and Pseudomonas aeruginosa were sensitive to Innolysin Ec6. To enhance the antibacterial activity, we further constructed 228 novel Innolysins by fusing 23 endolysins with Pb5. High-throughput screening allowed to select Innolysin Ec21 as the best antibacterial candidate, leading to 2.20 ± 0.09 log reduction in E. coli counts. Interestingly, Innolysin Ec21 also displayed bactericidal activity against E. coli resistant to third-generation cephalosporins, reaching a 3.31 ± 0.53 log reduction in cell counts. Overall, the Innolysin approach expands previous endolysin-engineering strategies, allowing customization of endolysins by exploiting phage RBPs to specifically target Gram-negative bacteria.


Assuntos
Endopeptidases/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Proteínas Virais/farmacologia , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Bacteriófagos/enzimologia , Desintegrinas/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Negativas/ultraestrutura , Bactérias Gram-Negativas/virologia
12.
Front Microbiol ; 9: 82, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467727

RESUMO

Campylobacter jejuni NCTC12662 is sensitive to infection by many Campylobacter bacteriophages. Here we used this strain to investigate the molecular mechanism behind phage resistance development when exposed to a single phage and demonstrate how phase variable expression of one surface component influences phage sensitivity against many diverse C. jejuni phages. When C. jejuni NCTC12662 was exposed to phage F207 overnight, 25% of the bacterial cells were able to grow on a lawn of phage F207, suggesting that resistance develops at a high frequency. One resistant variant, 12662R, was further characterized and shown to be an adsorption mutant. Plaque assays using our large phage collection showed that seven out of 36 diverse capsular polysaccharide (CPS)-dependent phages could not infect 12662R, whereas the remaining phages formed plaques on 12662R with reduced efficiencies. Analysis of the CPS composition of 12662R by high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) showed a diminished signal for O-methyl phosphoramidate (MeOPN), a phase variable modification of the CPS. This suggested that the majority of the 12662R population did not express this phase variable modification in the CPS, indicating that MeOPN serves as a phage receptor in NCTC12662. Whole genome analysis of 12662R showed a switch in the length of the phase variable homopolymeric G tract of gene 06810, encoding a putative MeOPN-transferase located in the CPS locus, resulting in a non-functional protein. To confirm the role of 06810 in phage resistance development of NCTC12662, a 06810 knockout mutant in NCTC12662 was constructed and analyzed by HR-MAS NMR demonstrating the absence of MeOPN in the CPS of the mutant. Plaque assays using NCTC12662Δ06810 demonstrated that seven of our CPS-dependent Campylobacter phages are dependent on the presence of MeOPN for successful infection of C. jejuni, whereas the remaining 29 phages infect independently of MeOPN, although with reduced efficiencies. Our data indicate that CPS-dependent phages uses diverse mechanisms for their initial interaction with their C. jejuni host.

13.
Microbiology (Reading) ; 163(6): 911-919, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28597819

RESUMO

Phase variation (PV) creates phenotypic heterogeneity at high frequencies and in a reversible manner. This phenomenon allows bacteria to adapt to a variety of different environments and selective pressures. In Campylobacterjejuni this reversible adaptive process is mediated by mutations in homopolymeric G/C tracts. Many C. jejuni-specific phages are dependent on phase-variable surface structures for successful infection. We previously identified the capsular polysaccharide (CPS) moiety, MeOPN-GalfNAc, as a receptor for phage F336 and showed that phase-variable expression of the transferase for this CPS modification, cj1421, and two other phase-variable CPS genes generated phage resistance in C. jejuni. Here we investigate the population dynamics of C. jejuni NCTC11168 when exposed to phage F336 in vitro using a newly described method - the 28-locus-CJ11168 PV analysis. Dynamic switching was observed in the ON/OFF states of three phase-variable CPS genes, cj1421, cj1422 and cj1426, during phage F336 exposure, with the dominant phage-resistant phasotype differing between cultures. Although loss of the phage receptor was predominately observed, several other PV events also led to phage resistance, a phenomenon that increases the chance of phage-resistant subpopulations being present in any growing culture. No other PV genes were affected and exposure to phage F336 resulted in a highly specific response, only selecting for phase variants of cj1421, cj1422 and cj1426. In summary, C. jejuni may benefit from modification of the surface in multiple ways to inhibit or reduce phage binding, thereby ensuring the survival of the population when exposed to phages.


Assuntos
Bacteriófagos/fisiologia , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/virologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Mutação
14.
Genome Announc ; 5(21)2017 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-28546493

RESUMO

Campylobacter jejuni NCTC12662 has been the choice bacteriophage isolation strain due to its susceptibility to C. jejuni bacteriophages. This trait makes it a good candidate for studying bacteriophage-host interactions. We report here the whole-genome sequence of NCTC12662, allowing future elucidation of the molecular mechanisms of phage-host interactions in C. jejuni.

15.
PLoS One ; 10(1): e0116287, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25585385

RESUMO

In this study we isolated novel bacteriophages, infecting the zoonotic bacterium Campylobacter jejuni. These phages may be used in phage therapy of C. jejuni colonized poultry to prevent spreading of the bacteria to meat products causing disease in humans. Many C. jejuni phages have been isolated using NCTC12662 as the indicator strain, which may have biased the selection of phages. A large group of C. jejuni phages rely on the highly diverse capsular polysaccharide (CPS) for infection and recent work identified the O-methyl phosphoramidate modification (MeOPN) of CPS as a phage receptor. We therefore chose seven C. jejuni strains each expressing different CPS structures as indicator strains in a large screening for phages in samples collected from free-range poultry farms. Forty-three phages were isolated using C. jejuni NCTC12658, NCTC12662 and RM1221 as host strains and 20 distinct phages were identified based on host range analysis and genome restriction profiles. Most phages were isolated using C. jejuni strains NCTC12662 and RM1221 and interestingly phage genome size (140 kb vs. 190 kb), host range and morphological appearance correlated with the isolation strain. Thus, according to C. jejuni phage grouping, NCTC12662 and NCTC12658 selected for CP81-type phages, while RM1221 selected for CP220-type phages. Furthermore, using acapsular ∆kpsM mutants we demonstrated that phages isolated on NCTC12658 and NCTC12662 were dependent on the capsule for infection. In contrast, CP220-type phages isolated on RM1221 were unable to infect non-motile ∆motA mutants, hence requiring motility for successful infection. Hence, the primary phage isolation strain determines both phage type (CP81 or CP220) as well as receptors (CPS or flagella) recognised by the isolated phages.


Assuntos
Bacteriófagos/isolamento & purificação , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/isolamento & purificação , Animais , Galinhas , Flagelos , Humanos
16.
Appl Environ Microbiol ; 80(22): 7096-106, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25261508

RESUMO

Previous studies have identified a specific modification of the capsular polysaccharide as receptor for phages that infect Campylobacter jejuni. Using acapsular kpsM mutants of C. jejuni strains NCTC11168 and NCTC12658, we found that bacteriophage F341 infects C. jejuni independently of the capsule. In contrast, phage F341 does not infect C. jejuni NCTC11168 mutants that either lack the flagellar filaments (ΔflaAB) or that have paralyzed, i.e., nonrotating, flagella (ΔmotA and ΔflgP). Complementing flgP confirmed that phage F341 requires rotating flagella for successful infection. Furthermore, adsorption assays demonstrated that phage F341 does not adsorb to these nonmotile C. jejuni NCTC11168 mutants. Taken together, we propose that phage F341 uses the flagellum as a receptor. Phage-host interactions were investigated using fluorescence confocal and transmission electron microscopy. These data demonstrate that F341 binds to the flagellum by perpendicular attachment with visible phage tail fibers interacting directly with the flagellum. Our data are consistent with the movement of the C. jejuni flagellum being required for F341 to travel along the filament to reach the basal body of the bacterium. The initial binding to the flagellum may cause a conformational change of the phage tail that enables DNA injection after binding to a secondary receptor.


Assuntos
Bacteriófagos/fisiologia , Campylobacter jejuni/citologia , Campylobacter jejuni/virologia , Flagelos/virologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/genética , Campylobacter jejuni/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-22919603

RESUMO

Bacteriophages are estimated to be the most abundant entities on earth and can be found in every niche where their bacterial hosts reside. The initial interaction between phages and Campylobacter jejuni, a common colonizer of poultry intestines and a major source of foodborne bacterial gastroenteritis in humans, is not well understood. Recently, we isolated and characterized a phage F336 resistant variant of C. jejuni NCTC11168 called 11168R. Comparisons of 11168R with the wildtype lead to the identification of a novel phage receptor, the phase variable O-methyl phosphoramidate (MeOPN) moiety of the C. jejuni capsular polysaccharide (CPS). In this study we demonstrate that the 11168R strain has gained cross-resistance to four other phages in our collection (F198, F287, F303, and F326). The reduced plaquing efficiencies suggested that MeOPN is recognized as a receptor by several phages infecting C. jejuni. To further explore the role of CPS modifications in C. jejuni phage recognition and infectivity, we tested the ability of F198, F287, F303, F326, and F336 to infect different CPS variants of NCTC11168, including defined CPS mutants. These strains were characterized by high-resolution magic angle spinning NMR spectroscopy. We found that in addition to MeOPN, the phase variable 3-O-Me and 6-O-Me groups of the NCTC11168 CPS structure may influence the plaquing efficiencies of the phages. Furthermore, co-infection of chickens with both C. jejuni NCTC11168 and phage F336 resulted in selection of resistant C. jejuni bacteria, which either lack MeOPN or gain 6-O-Me groups on their surface, demonstrating that resistance can be acquired in vivo. In summary, we have shown that phase variable CPS structures modulate phage infectivity in C. jejuni and suggest that the constant phage predation in the avian gut selects for changes in these structures leading to a continuing phage-host co-evolution.


Assuntos
Bacteriófagos/fisiologia , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/química , Campylobacter jejuni/virologia , Galinhas/microbiologia , Polissacarídeos Bacterianos/metabolismo , Animais , Mutação , Polissacarídeos Bacterianos/genética , Receptores Virais/genética , Receptores Virais/metabolismo , Ensaio de Placa Viral , Internalização do Vírus
18.
J Bacteriol ; 193(23): 6742-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965558

RESUMO

Bacteriophages infecting the food-borne human pathogen Campylobacter jejuni could potentially be exploited to reduce bacterial counts in poultry prior to slaughter. This bacterium colonizes the intestinal tract of poultry in high numbers, and contaminated poultry meat is regarded as the major source of human campylobacteriosis. In this study, we used phage F336 belonging to the Myoviridae family to select a C. jejuni NCTC11168 phage-resistant strain, called 11168R, with the aim of investigating the mechanisms of phage resistance. We found that phage F336 has reduced adsorption to 11168R, thus indicating that the receptor is altered. While proteinase K-treated C. jejuni cells did not affect adsorption, periodate treatment resulted in reduced adsorption, suggesting that the phage binds to a carbohydrate moiety. Using high-resolution magic angle spinning nuclear magnetic resonance (NMR) spectroscopy, we found that 11168R lacks an O-methyl phosphoramidate (MeOPN) moiety attached to the GalfNAc on the capsular polysaccharide (CPS), which was further confirmed by mass spectroscopy. Sequence analysis of 11168R showed that the potentially hypervariable gene cj1421, which encodes the GalfNAc MeOPN transferase, contains a tract of 10 Gs, resulting in a nonfunctional gene product. However, when 11168R reverted back to phage sensitive, cj1421 contained 9 Gs, and the GalfNAc MeOPN was regained in this strain. In summary, we have identified the phase-variable MeOPN moiety, a common component of the diverse capsular polysaccharides of C. jejuni, as a novel receptor of phages infecting this bacterium.


Assuntos
Amidas/metabolismo , Cápsulas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Campylobacter jejuni/virologia , Myoviridae/fisiologia , Ácidos Fosfóricos/metabolismo , Receptores Virais/metabolismo , Ligação Viral , Amidas/química , Cápsulas Bacterianas/química , Cápsulas Bacterianas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Campylobacter/microbiologia , Campylobacter jejuni/química , Campylobacter jejuni/genética , Humanos , Ácidos Fosfóricos/química , Receptores Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA