Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(17): 3571-3584.e6, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37536342

RESUMO

Plastid symbioses between heterotrophic hosts and algae are widespread and abundant in surface oceans. They are critically important both for extant ecological systems and for understanding the evolution of plastids. Kleptoplastidy, where the plastids of prey are temporarily retained and continuously re-acquired, provides opportunities to study the transitional states of plastid establishment. Here, we investigated the poorly studied marine centrohelid Meringosphaera and its previously unidentified symbionts using culture-independent methods from environmental samples. Investigations of the 18S rDNA from single-cell assembled genomes (SAGs) revealed uncharacterized genetic diversity within Meringosphaera that likely represents multiple species. We found that Meringosphaera harbors plastids of Dictyochophyceae origin (stramenopiles), for which we recovered six full plastid genomes and found evidence of two distinct subgroups that are congruent with host identity. Environmental monitoring by qPCR and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) revealed seasonal dynamics of both host and plastid. In particular, we did not detect the plastids for 6 months of the year, which, combined with the lack of plastids in some SAGs, suggests that the plastids are temporary and the relationship is kleptoplastidic. Importantly, we found evidence of genetic integration of the kleptoplasts as we identified host-encoded plastid-associated genes, with evolutionary origins likely from the plastid source as well as from other alga sources. This is only the second case where host-encoded kleptoplast-targeted genes have been predicted in an ancestrally plastid-lacking group. Our results provide evidence for gene transfers and protein re-targeting as relatively early events in the evolution of plastid symbioses.


Assuntos
Genoma , Simbiose , Simbiose/genética , Hibridização in Situ Fluorescente , Plastídeos/genética , Plastídeos/metabolismo , Filogenia
2.
Curr Biol ; 31(17): 3721-3728.e4, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256017

RESUMO

Partner switching plays an important role in the evolution of symbiosis, enabling local adaptation and recovery from the breakdown of symbiosis. Because of intergenomic epistasis, partner-switched symbioses may possess novel combinations of phenotypes but may also exhibit low fitness due to their lack of recent coevolutionary history. Here, we examine the structure and mechanisms of intergenomic epistasis in the Paramecium-Chlorella symbiosis and test whether compensatory evolution can rescue initially low fitness partner-switched symbioses. Using partner-switch experiments coupled with metabolomics, we show evidence for intergenomic epistasis wherein low fitness is associated with elevated symbiont stress responses either in dark or high irradiance environments, potentially owing to mismatched light management traits between the host and symbiont genotypes. Experimental evolution under high light conditions revealed that an initially low fitness partner-switched non-native host-symbiont pairing rapidly adapted, gaining fitness equivalent to the native host-symbiont pairing in less than 50 host generations. Compensatory evolution took two alternative routes: either hosts evolved higher symbiont loads to mitigate for their new algal symbiont's poor performance, or the algal symbionts themselves evolved higher investment in photosynthesis and photoprotective traits to better mitigate light stress. These findings suggest that partner switching combined with rapid compensatory evolution can enable the recovery and local adaptation of symbioses in response to changing environments.


Assuntos
Chlorella , Paramecium , Adaptação Fisiológica , Chlorella/fisiologia , Paramecium/genética , Fotossíntese/fisiologia , Simbiose/fisiologia
3.
Curr Biol ; 30(2): 328-334.e4, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31902722

RESUMO

Through the merger of previously independent lineages, symbiosis promotes the acquisition of new traits and exploitation of inaccessible ecological niches [1, 2], driving evolutionary innovation and important ecosystem functions [3-6]. The transient nature of establishment makes study of symbiotic origins difficult, but experimental comparison of independent origins could reveal the degree of convergence in the underpinning mechanisms [7, 8]. We compared the metabolic mechanisms of two independent origins of Paramecium bursaria-Chlorella photosymbiosis [9-11] using a reciprocal metabolomic pulse-chase method. This showed convergent patterns of nutrient exchange and utilization for host-derived nitrogen in the Chlorella genotypes [12, 13] and symbiont-derived carbon in the P. bursaria genotypes [14, 15]. Consistent with a convergent primary nutrient exchange, partner-switched host-symbiont pairings were functional. Direct competition of hosts containing native or recombined symbionts against isogenic symbiont-free hosts showed that the fitness benefits of symbiosis for hosts increased with irradiance but varied by genotype. Global metabolism varied more between the Chlorella than the P. bursaria genotypes and suggested divergent mechanisms of light management. Specifically, the algal symbiont genotypes either produced photo-protective carotenoid pigments at high irradiance or more chlorophyll, resulting in corresponding differences in photosynthetic efficiency and non-photochemical quenching among host-symbiont pairings. These data suggest that the multiple origins of P. bursaria-Chlorella symbiosis use a convergent nutrient exchange, whereas other photosynthetic traits linked to functioning of photosymbiosis have diverged. Although convergence enables partner switching among diverse strains, phenotypic mismatches resulting from divergence of secondary symbiotic traits could mediate host-symbiont specificity in nature.


Assuntos
Evolução Biológica , Chlorella/metabolismo , Paramecium/metabolismo , Simbiose , Carbono/metabolismo , Nitrogênio/metabolismo , Fotossíntese
4.
FEMS Microbiol Lett ; 366(12)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271421

RESUMO

Evolutionary theory suggests that the conditions required for the establishment of mutualistic symbioses through mutualism alone are highly restrictive, often requiring the evolution of complex stabilising mechanisms. Exploitation, whereby initially the host benefits at the expense of its symbiotic partner and mutual benefits evolve subsequently through trade-offs, offers an arguably simpler route to the establishment of mutualistic symbiosis. In this review, we discuss the theoretical and experimental evidence supporting a role for host exploitation in the establishment and evolution of mutualistic microbial symbioses, including data from both extant and experimentally evolved symbioses. We conclude that exploitation rather than mutualism may often explain the origin of mutualistic microbial symbioses.


Assuntos
Microbiologia , Simbiose/fisiologia , Evolução Biológica
5.
BMC Evol Biol ; 18(1): 108, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986646

RESUMO

BACKGROUND: Symbiosis is a major source of evolutionary innovation and, by allowing species to exploit new ecological niches, underpins the functioning of ecosystems. The transition from free-living to obligate symbiosis requires the alignment of the partners' fitness interests and the evolution of mutual dependence. While symbiotic taxa are known to vary widely in the extent of host-symbiont dependence, rather less is known about variation within symbiotic associations. RESULTS: Using experiments with the microbial symbiosis between the protist Paramecium bursaria and the alga Chlorella, we show variation between pairings in host-symbiont dependence, encompassing facultative associations, mutual dependence and host dependence upon the symbiont. Facultative associations, that is where both the host and the symbiont were capable of free-living growth, displayed higher symbiotic growth rates and higher per host symbiont loads than those with greater degrees of dependence. CONCLUSIONS: These data show that the Paramecium-Chlorella interaction exists at the boundary between facultative and obligate symbiosis, and further suggest that the host is more likely to evolve dependence than the algal symbiont.


Assuntos
Chlorella/fisiologia , Paramecium/microbiologia , Simbiose/fisiologia , Animais , Clorofila/metabolismo , Fluorescência , Paramecium/crescimento & desenvolvimento
6.
R Soc Open Sci ; 3(3): 150708, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27069664

RESUMO

Ancient evolutionary events are difficult to study because their current products are derived forms altered by millions of years of adaptation. The primary endosymbiotic event formed the first photosynthetic eukaryote resulting in both plants and algae, with vast consequences for life on Earth. The evolutionary time that passed since this event means the dominant mechanisms and changes that were required are obscured. Synthetic symbioses such as the novel interaction between Paramecium bursaria and the cyanobacterium Synechocystis PC6803, recently established in the laboratory, permit a unique window on the possible early trajectories of this critical evolutionary event. Here, we apply metabolic modelling, using flux balance analysis (FBA), to predict the metabolic adaptations necessary for this previously free-living symbiont to transition to the endosymbiotic niche. By enforcing reciprocal nutrient trading, we are able to predict the most efficient exchange nutrients for both host and symbiont. During the transition from free-living to obligate symbiosis, it is likely that the trading parameters will change over time, which leads in our model to discontinuous changes in the preferred exchange nutrients. Our results show the applicability of FBA modelling to ancient evolutionary transitions driven by metabolic exchanges, and predict how newly established endosymbioses, governed by conflict, will differ from a well-developed one that has reached a mutual-benefit state.

7.
J Theor Biol ; 405: 82-93, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-26925812

RESUMO

Photosymbiosis is one of the most important evolutionary trajectories, resulting in the chloroplast and the subsequent development of all complex photosynthetic organisms. The ciliate Paramecium bursaria and the alga Chlorella have a well established and well studied light dependent endosymbiotic relationship. Despite its prominence, there remain many unanswered questions regarding the exact mechanisms of the photosymbiosis. Of particular interest is how a host maintains and manages its symbiont load in response to the allocation of nutrients between itself and its symbionts. Here we construct a detailed mathematical model, parameterised from the literature, that explicitly incorporates nutrient trading within a deterministic model of both partners. The model demonstrates how the symbiotic relationship can manifest as parasitism of the host by the symbionts, mutualism, wherein both partners benefit, or exploitation of the symbionts by the hosts. We show that the precise nature of the photosymbiosis is determined by both environmental conditions (how much light is available for photosynthesis) and the level of control a host has over its symbiont load. Our model provides a framework within which it is possible to pose detailed questions regarding the evolutionary behaviour of this important example of an established light dependent endosymbiosis; we focus on one question in particular, namely the evolution of host control, and show using an adaptive dynamics approach that a moderate level of host control may evolve provided the associated costs are not prohibitive.


Assuntos
Chlorella/fisiologia , Paramecium/fisiologia , Fotossíntese/fisiologia , Simbiose/fisiologia , Adaptação Fisiológica/efeitos da radiação , Chlorella/crescimento & desenvolvimento , Luz , Paramecium/crescimento & desenvolvimento , Fotossíntese/efeitos da radiação , Simbiose/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA