Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NPJ Digit Med ; 7(1): 42, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383884

RESUMO

A major barrier to deploying healthcare AI is trustworthiness. One form of trustworthiness is a model's robustness across subgroups: while models may exhibit expert-level performance on aggregate metrics, they often rely on non-causal features, leading to errors in hidden subgroups. To take a step closer towards trustworthy seizure onset detection from EEG, we propose to leverage annotations that are produced by healthcare personnel in routine clinical workflows-which we refer to as workflow notes-that include multiple event descriptions beyond seizures. Using workflow notes, we first show that by scaling training data to 68,920 EEG hours, seizure onset detection performance significantly improves by 12.3 AUROC (Area Under the Receiver Operating Characteristic) points compared to relying on smaller training sets with gold-standard labels. Second, we reveal that our binary seizure onset detection model underperforms on clinically relevant subgroups (e.g., up to a margin of 6.5 AUROC points between pediatrics and adults), while having significantly higher FPRs (False Positive Rates) on EEG clips showing non-epileptiform abnormalities (+19 FPR points). To improve model robustness to hidden subgroups, we train a multilabel model that classifies 26 attributes other than seizures (e.g., spikes and movement artifacts) and significantly improve overall performance (+5.9 AUROC points) while greatly improving performance among subgroups (up to +8.3 AUROC points) and decreasing false positives on non-epileptiform abnormalities (by 8 FPR points). Finally, we find that our multilabel model improves clinical utility (false positives per 24 EEG hours) by a factor of 2×.

2.
Neural Netw ; 152: 499-509, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35640371

RESUMO

Large neural networks usually perform well for executing machine learning tasks. However, models that achieve state-of-the-art performance involve arbitrarily large number of parameters and therefore their training is very expensive. It is thus desired to implement methods with small per-iteration costs, fast convergence rates, and reduced tuning. This paper proposes a multivariate adaptive gradient descent method that meets the above attributes. The proposed method updates every element of the model parameters separately in a computationally efficient manner using an adaptive vector-form learning rate, resulting in low per-iteration cost. The adaptive learning rate computes the absolute difference of current and previous model parameters over the difference in subgradients of current and previous state estimates. In the deterministic setting, we show that the cost function value converges at a linear rate for smooth and strongly convex cost functions. Whereas in both the deterministic and stochastic setting, we show that the gradient converges in expectation at the order of O(1/k) for a non-convex cost function with Lipschitz continuous gradient. In addition, we show that after T iterates, the cost function of the last iterate scales as O(log(T)/T) for non-smooth strongly convex cost functions. Effectiveness of the proposed method is validated on convex functions, smooth non-convex function, non-smooth convex function, and four image classification data sets, whilst showing that its execution requires hardly any tuning unlike existing popular optimizers that entail relatively large tuning efforts. Our empirical results show that our proposed algorithm provides the best overall performance when comparing it to tuned state-of-the-art optimizers.


Assuntos
Algoritmos , Redes Neurais de Computação , Aprendizado de Máquina
3.
Patterns (N Y) ; 1(2)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776018

RESUMO

A major bottleneck in developing clinically impactful machine learning models is a lack of labeled training data for model supervision. Thus, medical researchers increasingly turn to weaker, noisier sources of supervision, such as leveraging extractions from unstructured text reports to supervise image classification. A key challenge in weak supervision is combining sources of information that may differ in quality and have correlated errors. Recently, a statistical theory of weak supervision called data programming has shown promise in addressing this challenge. Data programming now underpins many deployed machine-learning systems in the technology industry, even for critical applications. We propose a new technique for applying data programming to the problem of cross-modal weak supervision in medicine, wherein weak labels derived from an auxiliary modality (e.g., text) are used to train models over a different target modality (e.g., images). We evaluate our approach on diverse clinical tasks via direct comparison to institution-scale, hand-labeled datasets. We find that our supervision technique increases model performance by up to 6 points area under the receiver operating characteristic curve (ROC-AUC) over baseline methods by improving both coverage and quality of the weak labels. Our approach yields models that on average perform within 1.75 points ROC-AUC of those supervised with physician-years of hand labeling and outperform those supervised with physician-months of hand labeling by 10.25 points ROC-AUC, while using only person-days of developer time and clinician work-a time saving of 96%. Our results suggest that modern weak supervision techniques such as data programming may enable more rapid development and deployment of clinically useful machine-learning models.

4.
NPJ Digit Med ; 3: 59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32352037

RESUMO

Automated seizure detection from electroencephalography (EEG) would improve the quality of patient care while reducing medical costs, but achieving reliably high performance across patients has proven difficult. Convolutional Neural Networks (CNNs) show promise in addressing this problem, but they are limited by a lack of large labeled training datasets. We propose using imperfect but plentiful archived annotations to train CNNs for automated, real-time EEG seizure detection across patients. While these weak annotations indicate possible seizures with precision scores as low as 0.37, they are commonly produced in large volumes within existing clinical workflows by a mixed group of technicians, fellows, students, and board-certified epileptologists. We find that CNNs trained using such weak annotations achieve Area Under the Receiver Operating Characteristic curve (AUROC) values of 0.93 and 0.94 for pediatric and adult seizure onset detection, respectively. Compared to currently deployed clinical software, our model provides a 31% increase (18 points) in F1-score for pediatric patients and a 17% increase (11 points) for adult patients. These results demonstrate that weak annotations, which are sustainably collected via existing clinical workflows, can be leveraged to produce clinically useful seizure detection models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA