Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36081012

RESUMO

Specular highlights detection and removal in images is a fundamental yet non-trivial problem of interest. Most modern techniques proposed are inadequate at dealing with real-world images taken under uncontrolled conditions with the presence of complex textures, multiple objects, and bright colours, resulting in reduced accuracy and false positives. To detect specular pixels in a wide variety of real-world images independent of the number, colour, or type of illuminating source, we propose an efficient Specular Segmentation (SpecSeg) network based on the U-net architecture that is expeditious to train on nominal-sized datasets. The proposed network can detect pixels strongly affected by specular highlights with a high degree of precision, as shown by comparison with the state-of-the-art methods. The technique proposed is trained on publicly available datasets and tested using a large selection of real-world images with highly encouraging results.

2.
Sensors (Basel) ; 22(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015850

RESUMO

Buses and heavy vehicles have more blind spots compared to cars and other road vehicles due to their large sizes. Therefore, accidents caused by these heavy vehicles are more fatal and result in severe injuries to other road users. These possible blind-spot collisions can be identified early using vision-based object detection approaches. Yet, the existing state-of-the-art vision-based object detection models rely heavily on a single feature descriptor for making decisions. In this research, the design of two convolutional neural networks (CNNs) based on high-level feature descriptors and their integration with faster R-CNN is proposed to detect blind-spot collisions for heavy vehicles. Moreover, a fusion approach is proposed to integrate two pre-trained networks (i.e., Resnet 50 and Resnet 101) for extracting high level features for blind-spot vehicle detection. The fusion of features significantly improves the performance of faster R-CNN and outperformed the existing state-of-the-art methods. Both approaches are validated on a self-recorded blind-spot vehicle detection dataset for buses and an online LISA dataset for vehicle detection. For both proposed approaches, a false detection rate (FDR) of 3.05% and 3.49% are obtained for the self recorded dataset, making these approaches suitable for real time applications.


Assuntos
Veículos Automotores , Redes Neurais de Computação , Automóveis
3.
Sensors (Basel) ; 20(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053886

RESUMO

Oral mucosal lesions (OML) and oral potentially malignant disorders (OPMDs) have been identified as having the potential to transform into oral squamous cell carcinoma (OSCC). This research focuses on the human-in-the-loop-system named Healthcare Professionals in the Loop (HPIL) to support diagnosis through an advanced machine learning procedure. HPIL is a novel system approach based on the textural pattern of OML and OPMDs (anomalous regions) to differentiate them from standard regions of the oral cavity by using autofluorescence imaging. An innovative method based on pre-processing, e.g., the Deriche-Canny edge detector and circular Hough transform (CHT); a post-processing textural analysis approach using the gray-level co-occurrence matrix (GLCM); and a feature selection algorithm (linear discriminant analysis (LDA)), followed by k-nearest neighbor (KNN) to classify OPMDs and the standard region, is proposed in this paper. The accuracy, sensitivity, and specificity in differentiating between standard and anomalous regions of the oral cavity are 83%, 85%, and 84%, respectively. The performance evaluation was plotted through the receiver operating characteristics of periodontist diagnosis with the HPIL system and without the system. This method of classifying OML and OPMD areas may help the dental specialist to identify anomalous regions for performing their biopsies more efficiently to predict the histological diagnosis of epithelial dysplasia.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Imagem Óptica , Carcinoma de Células Escamosas/diagnóstico por imagem , Atenção à Saúde , Humanos , Neoplasias Bucais/diagnóstico por imagem , Padrões de Referência
4.
Front Neuroinform ; 13: 66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649522

RESUMO

Color is a perceptual stimulus that has a significant impact on improving human emotion and memory. Studies have revealed that colored multimedia learning materials (MLMs) have a positive effect on learner's emotion and learning where it was assessed by subjective/objective measurements. This study aimed to quantitatively assess the influence of colored MLMs on emotion, cognitive processes during learning, and long-term memory (LTM) retention using electroencephalography (EEG). The dataset consisted of 45 healthy participants, and MLMs were designed in colored or achromatic illustrations to elicit emotion and that to assess its impact on LTM retention after 30-min and 1-month delay. The EEG signal analysis was first started to estimate the effective connectivity network (ECN) using the phase slope index and expand it to characterize the ECN pattern using graph theoretical analysis. EEG results showed that colored MLMs had influences on theta and alpha networks, including (1) an increased frontal-parietal connectivity (top-down processing), (2) a larger number of brain hubs, (3) a lower clustering coefficient, and (4) a higher local efficiency, indicating that color influences information processing in the brain, as reflected by ECN, together with a significant improvement in learner's emotion and memory performance. This is evidenced by a more positive emotional valence and higher recall accuracy for groups who learned with colored MLMs than that of achromatic MLMs. In conclusion, this paper demonstrated how the EEG ECN parameters could help quantify the influences of colored MLMs on emotion and cognitive processes during learning.

5.
PLoS One ; 14(7): e0219839, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31344061

RESUMO

The extraversion personality trait has a positive correlation with social interaction. In neuroimaging studies, investigations on extraversion in face-to-face verbal interactions are still scarce. This study presents an electroencephalography (EEG)-based investigation of the extraversion personality trait in relation to eye contact during face-to-face interactions, as this is a vital signal in social interactions. A sample of healthy male participants were selected (consisting of sixteen more extraverted and sixteen less extraverted individuals) and evaluated with the Eysenck's Personality Inventory (EPI) and Big Five Inventory (BFI) tools. EEG alpha oscillations in the occipital region were measured to investigate extraversion personality trait correlates of eye contact during a face-to-face interaction task and an eyes-open condition. The results revealed that the extraversion personality trait has a significant positive correlation with EEG alpha coherence in the occipital region, presumably due to its relationship with eye contact during the interaction task. Furthermore, the decrease in EEG alpha power during the interaction task compared to the eyes-open condition was found to be greater in the less extraverted participants; however, no significant difference was observed between the less and more extraverted participants. Overall, these findings encourage further research towards the understanding of neural mechanism correlates of the extraversion personality trait-particularly in social interaction.


Assuntos
Extroversão Psicológica , Voluntários Saudáveis/psicologia , Lobo Occipital/fisiologia , Eletroencefalografia , Humanos , Relações Interpessoais , Masculino , Inventário de Personalidade , Autoavaliação (Psicologia) , Comportamento Social , Adulto Jovem
6.
Cogn Neurodyn ; 12(1): 1-20, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29435084

RESUMO

Complaints of stress are common in modern life. Psychological stress is a major cause of lifestyle-related issues, contributing to poor quality of life. Chronic stress impedes brain function, causing impairment of many executive functions, including working memory, decision making and attentional control. The current study sought to describe newly developed stress mitigation techniques, and their influence on autonomic and endocrine functions. The literature search revealed that the most frequently studied technique for stress mitigation was biofeedback (BFB). However, evidence suggests that neurofeedback (NFB) and noninvasive brain stimulation (NIBS) could potentially provide appropriate approaches. We found that recent studies of BFB methods have typically used measures of heart rate variability, respiration and skin conductance. In contrast, studies of NFB methods have typically utilized neurocomputation techniques employing electroencephalography, functional magnetic resonance imaging and near infrared spectroscopy. NIBS studies have typically utilized transcranial direct current stimulation methods. Mitigation of stress is a challenging but important research target for improving quality of life.

7.
Artif Intell Med ; 84: 79-89, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29169647

RESUMO

BACKGROUND: The abnormal alcohol consumption could cause toxicity and could alter the human brain's structure and function, termed as alcohol used disorder (AUD). Unfortunately, the conventional screening methods for AUD patients are subjective and manual. Hence, to perform automatic screening of AUD patients, objective methods are needed. The electroencephalographic (EEG) data have been utilized to study the differences of brain signals between alcoholics and healthy controls that could further developed as an automatic screening tool for alcoholics. METHOD: In this work, resting-state EEG-derived features were utilized as input data to the proposed feature selection and classification method. The aim was to perform automatic classification of AUD patients and healthy controls. The validation of the proposed method involved real-EEG data acquired from 30 AUD patients and 30 age-matched healthy controls. The resting-state EEG-derived features such as synchronization likelihood (SL) were computed involving 19 scalp locations resulted into 513 features. Furthermore, the features were rank-ordered to select the most discriminant features involving a rank-based feature selection method according to a criterion, i.e., receiver operating characteristics (ROC). Consequently, a reduced set of most discriminant features was identified and utilized further during classification of AUD patients and healthy controls. In this study, three different classification models such as Support Vector Machine (SVM), Naïve Bayesian (NB), and Logistic Regression (LR) were used. RESULTS: The study resulted into SVM classification accuracy=98%, sensitivity=99.9%, specificity=95%, and f-measure=0.97; LR classification accuracy=91.7%, sensitivity=86.66%, specificity=96.6%, and f-measure=0.90; NB classification accuracy=93.6%, sensitivity=100%, specificity=87.9%, and f-measure=0.95. CONCLUSION: The SL features could be utilized as objective markers to screen the AUD patients and healthy controls.


Assuntos
Alcoolismo/diagnóstico , Ondas Encefálicas , Encéfalo/fisiopatologia , Diagnóstico por Computador/métodos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador , Máquina de Vetores de Suporte , Adulto , Idoso , Alcoolismo/fisiopatologia , Área Sob a Curva , Automação , Teorema de Bayes , Estudos de Casos e Controles , Feminino , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Curva ROC , Reprodutibilidade dos Testes
8.
Front Comput Neurosci ; 11: 103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209190

RESUMO

Feature extraction is an important step in the process of electroencephalogram (EEG) signal classification. The authors propose a "pattern recognition" approach that discriminates EEG signals recorded during different cognitive conditions. Wavelet based feature extraction such as, multi-resolution decompositions into detailed and approximate coefficients as well as relative wavelet energy were computed. Extracted relative wavelet energy features were normalized to zero mean and unit variance and then optimized using Fisher's discriminant ratio (FDR) and principal component analysis (PCA). A high density EEG dataset validated the proposed method (128-channels) by identifying two classifications: (1) EEG signals recorded during complex cognitive tasks using Raven's Advance Progressive Metric (RAPM) test; (2) EEG signals recorded during a baseline task (eyes open). Classifiers such as, K-nearest neighbors (KNN), Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Naïve Bayes (NB) were then employed. Outcomes yielded 99.11% accuracy via SVM classifier for coefficient approximations (A5) of low frequencies ranging from 0 to 3.90 Hz. Accuracy rates for detailed coefficients were 98.57 and 98.39% for SVM and KNN, respectively; and for detailed coefficients (D5) deriving from the sub-band range (3.90-7.81 Hz). Accuracy rates for MLP and NB classifiers were comparable at 97.11-89.63% and 91.60-81.07% for A5 and D5 coefficients, respectively. In addition, the proposed approach was also applied on public dataset for classification of two cognitive tasks and achieved comparable classification results, i.e., 93.33% accuracy with KNN. The proposed scheme yielded significantly higher classification performances using machine learning classifiers compared to extant quantitative feature extraction. These results suggest the proposed feature extraction method reliably classifies EEG signals recorded during cognitive tasks with a higher degree of accuracy.

9.
Biomed Eng Online ; 13: 109, 2014 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-25087016

RESUMO

BACKGROUND: Subcutaneous veins localization is usually performed manually by medical staff to find suitable vein to insert catheter for medication delivery or blood sample function. The rule of thumb is to find large and straight enough vein for the medication to flow inside of the selected blood vessel without any obstruction. The problem of peripheral difficult venous access arises when patient's veins are not visible due to any reason like dark skin tone, presence of hair, high body fat or dehydrated condition, etc. METHODS: To enhance the visibility of veins, near infrared imaging systems is used to assist medical staff in veins localization process. Optimum illumination is crucial to obtain a better image contrast and quality, taking into consideration the limited power and space on portable imaging systems. In this work a hyperspectral image quality assessment is done to get the optimum range of illumination for venous imaging system. A database of hyperspectral images from 80 subjects has been created and subjects were divided in to four different classes on the basis of their skin tone. In this paper the results of hyper spectral image analyses are presented in function of the skin tone of patients. For each patient, four mean images were constructed by taking mean with a spectral span of 50 nm within near infrared range, i.e. 750-950 nm. Statistical quality measures were used to analyse these images. CONCLUSION: It is concluded that the wavelength range of 800 to 850 nm serve as the optimum illumination range to get best near infrared venous image quality for each type of skin tone.


Assuntos
Luz , Imagem Óptica/métodos , Pigmentação da Pele , Pele/irrigação sanguínea , Veias , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA