RESUMO
The antibiotics overuse for infection treatment was the sparkle in the spreading of multi-drug resistance Acinetobacter baumannii in hospitals. In our study, we evaluated the contribution of the aminoglycoside resistance mechanisms of A. baumannii to the resistance surge in some selected Egyptian hospitals with a checkerboard assay application to retrieve the aminoglycoside activity. The resistance profile analysis of collected 200 A. baumannii isolates revealed a multidrug-resistant pattern with limited susceptibilities to aminoglycosides. Analysis of the prevalence of aminoglycoside-modifying enzyme (AMEs) genes revealed the presence of the six AMEs genes either singly or in combination in selected isolates and aph (3)-VIa gene was the predominant one. At the same time, four efflux pump genes of AdeABC and AdeKJL family showed significant (P < 0.001) up-regulation levels. Moreover, the implementation of combination strategy showed fourteen synergistic activities against two high-level aminoglycoside-resistance (HLAR) A. baumannii isolates. The findings highlighted the alarming levels of aminoglycoside resistance in A. baumannii isolates, which proved that a common enzymatic modification mechanism acts synergistically with decreased antibiotic accumulation in acquiring aminoglycoside resistance. Additionally, the study provides useful information for the promising synergistic combination therapy that reduces the therapeutic dose of aminoglycosides used and subsequently increases their clinical application.