RESUMO
The refining process of petroleum crude oil generates asphaltenes, which poses complicated problems during the production of cleaner fuels. Following refining, asphaltenes are typically combusted for reuse as fuel or discarded into tailing ponds and landfills, leading to economic and environmental disruption. Here, we show that low-value asphaltenes can be converted into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG), via the flash joule heating (FJH) process. After successful conversion, we develop nanocomposites by dispersing AFG into a polymer effectively, which have superior mechanical, thermal, and corrosion-resistant properties compared to the bare polymer. In addition, the life cycle and technoeconomic analysis show that the FJH process leads to reduced environmental impact compared to the traditional processing of asphaltene and lower production cost compared to other FJH precursors. Thus, our work suggests an alternative pathway to the existing asphaltene processing that directs toward a higher value stream while sequestering downstream emissions from the processing.
RESUMO
A cost-effective scalable chemical route to produce pH-responsive active colloids (ACs) is developed here. For the first time, calcium carbonate particles are half-coated with a silica layer via Pickering emulsion methodology. This methodology allows to create anisotropy on the particles' surfaces and benefit from the decomposition of the calcium carbonate in acidic media to generate self-propulsion. The coupling between the self-diffusiophoretic motion of these ACs and acid concentrations is experimentally investigated in Newtonian media via optical microscopy. With increasing hydrogen-ion concentrations, the pH-responsive colloids experience higher mean-square displacements because of self-propulsion velocities and enhanced long-time diffusivities. Because they are biocompatible and environmentally friendly, these ACs constitute a platform for advanced diagnostics, targeted drug delivery, and water/soil remediation.
RESUMO
Self-diffusiophoresis of synthetic Janus (Si/Pt) microspheres in the presence of hydrogen peroxide in complex environments is here investigated. We aim to address the single particle dynamics of these active colloids in different viscoelastic fluids. Experimentally, the Janus colloids were dispersed in a dilute polyvinylpyrrolidone (PVP) solution and in a polyacrylamide (PAM) solution in semi-dilute and semi-dilute entangled regime to analyze their Brownian and active motion. These two systems were chosen to probe different relaxation times from relatively short (â¼5 ms) for PVP to large (â¼14.5 s) for PAM but always smaller than the rotary Brownian motion time scale. Within this regime, we investigate the coupling between the self-propulsion velocity and the medium rheology. Janus particles are found to get physically confined by polymeric entanglements but surprisingly they are able to escape the physical cage in a time scale much shorter than the relaxation time of the polymer solution. This is particularly relevant for application of self-propelling particles in biomedicine, water and soil remediation where complex environments are naturally present.