Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(6): e0198291, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889908

RESUMO

Eph/Ephrin signaling pathways are crucial in regulating a large variety of physiological processes during development, such as cell morphology, proliferation, migration and axonal guidance. EphrinA (efn-A) ligands, in particular, can be activated by EphA receptors at cell-cell interfaces and have been proposed to cause reverse signaling via RET receptor tyrosine kinase. Such association has been reported to mediate spinal motor axon navigation, but conservation of the interactive signaling pathway and the molecular mechanism of the interaction are unclear. Here, we found Danio rerio efn-A5b bound to Mus musculus EphA4 with high affinity, revealing structurally and functionally conserved EphA/efn-A signaling. Interestingly, we observed no interaction between efn-A5b and RET from zebrafish, unlike earlier cell-based assays. Their lack of association indicates how complex efn-A signaling is and suggests that there may be other molecules involved in efn-A5-induced RET signaling.


Assuntos
Efrina-A5/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Linhagem Celular , Efrina-A5/química , Técnicas In Vitro , Camundongos , Neurônios Motores/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-ret/química , Receptor EphA4/metabolismo , Células Sf9 , Proteínas de Peixe-Zebra/química
2.
PLoS One ; 12(5): e0176166, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28467503

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is a ligand that activates, through co-receptor GDNF family receptor alpha-1 (GFRα1) and receptor tyrosine kinase "RET", several signaling pathways crucial in the development and sustainment of multiple neuronal populations. We decided to study whether non-mammalian orthologs of these three proteins have conserved their function: can they activate the human counterparts? Using the baculovirus expression system, we expressed and purified Danio rerio RET, and its binding partners GFRα1 and GDNF, and Drosophila melanogaster RET and two isoforms of co-receptor GDNF receptor-like. Our results report high-level insect cell expression of post-translationally modified and dimerized zebrafish RET and its binding partners. We also found that zebrafish GFRα1 and GDNF are comparably active as mammalian cell-produced ones. We also report the first measurements of the affinity of the complex to RET in solution: at least for zebrafish, the Kd for GFRα1-GDNF binding RET is 5.9 µM. Surprisingly, we also found that zebrafish GDNF as well as zebrafish GFRα1 robustly activated human RET signaling and promoted the survival of cultured mouse dopaminergic neurons with comparable efficiency to mammalian GDNF, unlike E. coli-produced human proteins. These results contradict previous studies suggesting that mammalian GFRα1 and GDNF cannot bind and activate non-mammalian RET and vice versa.


Assuntos
Dopamina/metabolismo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Sequência de Aminoácidos , Animais , Sobrevivência Celular , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Humanos , Fosforilação , Homologia de Sequência de Aminoácidos , Peixe-Zebra
3.
Methods Enzymol ; 556: 185-218, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25857783

RESUMO

G-protein-coupled receptors (GPCRs) are a large family of seven transmembrane proteins that influence a considerable number of cellular events. For this reason, they are one of the most studied receptor types for their pharmacological and structural properties. Solving the structure of several GPCR receptor types has been possible using almost all expression systems, including Escherichia coli, yeast, mammalian, and insect cells. So far, however, most of the GPCR structures solved have been done using the baculovirus insect cell expression system. The reason for this is mainly due to cost-effectiveness, posttranslational modification efficiency, and overall effortless maintenance. The system has evolved so much that variables starting from vector type, purification tags, cell line, and growth conditions can be varied and optimized countless ways to suit the needs of new constructs. Here, we present the array of techniques that enable the rapid and efficient optimization of expression steps for maximal protein quality and quantity, including our emendations.


Assuntos
Baculoviridae/genética , DNA Recombinante/genética , Insetos/genética , Receptores Acoplados a Proteínas G/genética , Transfecção/métodos , Animais , Reatores Biológicos , Linhagem Celular , Expressão Gênica , Vetores Genéticos/genética , Humanos , Insetos/citologia , Modelos Moleculares , Receptores Acoplados a Proteínas G/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA