Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839991

RESUMO

Lipid-protein interactions play a multitude of essential roles in membrane homeostasis. Mitochondrial membranes have a unique lipid-protein environment that ensures bioenergetic efficiency. Cardiolipin (CL), the signature mitochondrial lipid, plays multiple roles in promoting oxidative phosphorylation (OXPHOS). In the inner mitochondrial membrane, the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) exchanges ADP and ATP, enabling OXPHOS. AAC/ANT contains three tightly bound CLs, and these interactions are evolutionarily conserved. Here, we investigated the role of these buried CLs in AAC/ANT using a combination of biochemical approaches, native mass spectrometry, and molecular dynamics simulations. We introduced negatively charged mutations into each CL-binding site of yeast Aac2 and established experimentally that the mutations disrupted the CL interactions. While all mutations destabilized Aac2 tertiary structure, transport activity was impaired in a binding site-specific manner. Additionally, we determined that a disease-associated missense mutation in one CL-binding site in human ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.

2.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961604

RESUMO

Terminal oligopyrimidine motif-containing mRNAs (TOPs) encode all ribosomal proteins in mammals and are regulated to tune ribosome synthesis to cell state. Previous studies implicate LARP1 in 40S- or 80S-ribosome complexes that repress and stabilize TOPs. However, a mechanistic understanding of how LARP1 and TOPs interact with these complexes to coordinate TOP outcomes is lacking. Here, we show that LARP1 senses the cellular supply of ribosomes by directly binding non-translating ribosomal subunits. Cryo-EM structures reveal a previously uncharacterized domain of LARP1 bound to and occluding the 40S mRNA channel. Free cytosolic ribosomes induce sequestration of TOPs in repressed 80S-LARP1-TOP complexes independent of alterations in mTOR signaling. Together, this work demonstrates a general ribosome-sensing function of LARP1 that allows it to tune ribosome protein synthesis to cellular demand.

3.
Mol Cell ; 83(13): 2276-2289.e11, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37329884

RESUMO

Stochasticity has emerged as a mechanism of gene regulation. Much of this so-called "noise" has been attributed to bursting transcription. Although bursting transcription has been studied extensively, the role of stochasticity in translation has not been fully investigated due to the lack of enabling imaging technology. In this study, we developed techniques to track single mRNAs and their translation in live cells for hours, allowing the measurement of previously uncharacterized translation dynamics. We applied genetic and pharmacological perturbations to control translation kinetics and found that, like transcription, translation is not a constitutive process but instead cycles between inactive and active states, or "bursts." However, unlike transcription, which is largely frequency-modulated, complex structures in the 5'-untranslated region alter burst amplitudes. Bursting frequency can be controlled through cap-proximal sequences and trans-acting factors such as eIF4F. We coupled single-molecule imaging with stochastic modeling to quantitatively determine the kinetic parameters of translational bursting.


Assuntos
Regulação da Expressão Gênica , RNA Mensageiro/genética , Regiões 5' não Traduzidas
4.
bioRxiv ; 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37205478

RESUMO

The mitochondrial phospholipid cardiolipin (CL) promotes bioenergetics via oxidative phosphorylation (OXPHOS). Three tightly bound CLs are evolutionarily conserved in the ADP/ATP carrier (AAC in yeast; adenine nucleotide translocator, ANT in mammals) which resides in the inner mitochondrial membrane and exchanges ADP and ATP to enable OXPHOS. Here, we investigated the role of these buried CLs in the carrier using yeast Aac2 as a model. We introduced negatively charged mutations into each CL-binding site of Aac2 to disrupt the CL interactions via electrostatic repulsion. While all mutations disturbing the CL-protein interaction destabilized Aac2 monomeric structure, transport activity was impaired in a pocket-specific manner. Finally, we determined that a disease-associated missense mutation in one CL-binding site in ANT1 compromised its structure and transport activity, resulting in OXPHOS defects. Our findings highlight the conserved significance of CL in AAC/ANT structure and function, directly tied to specific lipid-protein interactions.

5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217614

RESUMO

Translation start site selection in eukaryotes is influenced by context nucleotides flanking the AUG codon and by levels of the eukaryotic translation initiation factors eIF1 and eIF5. In a search of mammalian genes, we identified five homeobox (Hox) gene paralogs initiated by AUG codons in conserved suboptimal context as well as 13 Hox genes that contain evolutionarily conserved upstream open reading frames (uORFs) that initiate at AUG codons in poor sequence context. An analysis of published cap analysis of gene expression sequencing (CAGE-seq) data and generated CAGE-seq data for messenger RNAs (mRNAs) from mouse somites revealed that the 5' leaders of Hox mRNAs of interest contain conserved uORFs, are generally much shorter than reported, and lack previously proposed internal ribosome entry site elements. We show that the conserved uORFs inhibit Hox reporter expression and that altering the stringency of start codon selection by overexpressing eIF1 or eIF5 modulates the expression of Hox reporters. We also show that modifying ribosome homeostasis by depleting a large ribosomal subunit protein or treating cells with sublethal concentrations of puromycin leads to lower stringency of start codon selection. Thus, altering global translation can confer gene-specific effects through altered start codon selection stringency.


Assuntos
Códon de Iniciação , Evolução Molecular , Genes Homeobox , Biossíntese de Proteínas , RNA Mensageiro/genética , Animais , Camundongos , Fases de Leitura Aberta
6.
J Assist Reprod Genet ; 39(1): 183-193, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34806131

RESUMO

PURPOSE: People with sickle cell disease (SCD) or trait have many reproductive options, some of which decrease the chance of passing SCD to children, including in vitro fertilization with preimplantation genetic testing (IVF + PGT). Few are aware of these options, and educational materials are needed. This study aimed to develop an accessible, non-directive patient education material about reproductive options for those with SCD or trait via a process that incorporated stakeholders from the SCD community. METHODS: Multidisciplinary stakeholders guided development and revision of a novel pamphlet. Researchers applied health literacy scales to measure pamphlet understandability. We interviewed nine patients with SCD and six multidisciplinary clinicians to evaluate the pamphlet. Interviews were recorded, transcribed, and coded by a five-member team who developed a codebook and proposed themes that were revised by all research team members. Feedback was incorporated into a revised pamphlet. RESULTS: A two-page pamphlet describing reproductive options for people with SCD including IVF + PGT was acceptable to key stakeholders, including people with SCD. Material about this complex topic met health literacy standards, including being written at a 5th grade level. Patients reported feeling hopeful after reviewing the pamphlet, and participants considered the pamphlet useful, clear, and appropriate for distribution in clinics and online. CONCLUSIONS: Though awareness of reproductive options for those with SCD or trait is low, patients and providers find a novel pamphlet about this topic acceptable and useful. Educational materials about complex topics including IVF + PGT can be written at a level understandable to the average American.


Assuntos
Anemia Falciforme/terapia , Educação de Pacientes como Assunto/normas , Adulto , Anemia Falciforme/psicologia , Feminino , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Entrevistas como Assunto/métodos , Masculino , Educação de Pacientes como Assunto/métodos , Educação de Pacientes como Assunto/estatística & dados numéricos , Inquéritos e Questionários
7.
Nat Rev Mol Cell Biol ; 22(10): 671-690, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34272502

RESUMO

Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.


Assuntos
Biossíntese de Proteínas/fisiologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
8.
Acad Med ; 96(8): 1160-1163, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33298695

RESUMO

PROBLEM: Some focus on recognizing excellence in clinical teaching has been lost with the increasing emphasis placed on clinical efficiency and value. Clinical teaching awards and academies of educators aim to address this problem. In 2015, medical student leaders at the Johns Hopkins University School of Medicine created the Distinguished Teaching Society (DTS), a student-driven program to recognize the best clinical educators. APPROACH: Medical students designed a comprehensive scoring rubric focusing on 3 domains: feedback and evaluation, role model behavior, and teaching process. A student committee solicits student nominations providing narratives endorsing faculty or house staff for potential inclusion in the DTS. Using the rubric, student judges score each deidentified narrative nomination, as well as an application from finalists and comments about finalists submitted by the student body. Inductees are recognized at an annual ceremony. OUTCOMES: From academic years 2015-2016 to 2018-2019, students nominated 254 unique candidates, and 82 nominees (32%) were inducted into the DTS. The majority of inductees were faculty and male. In 2017-2018 and 2018-2019, nearly half of inductees were female, and less than 10% of inductees self-reported as underrepresented in medicine and/or LGBTQ+. The Department of Internal Medicine had the greatest departmental representation. There were no statistically significant differences in the proportional representation within the nomination and inductee cohorts by gender, rank, and department. Several process changes were made in response to student feedback and to increase nominee and inductee diversity. NEXT STEPS: Next steps include adding a diversity and inclusion chair to the student committee and collecting survey data on student and DTS inductee opinions on how to improve learner-teacher engagement and the clinical learning environment. Future activities may include educational workshops, panel discussions, mentorship programs, and networking events. Other medical schools may find value in considering similar structures.


Assuntos
Internato e Residência , Estudantes de Medicina , Docentes , Feminino , Humanos , Masculino , Faculdades de Medicina , Ensino , Universidades
9.
Elife ; 92020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32744497

RESUMO

Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation.


Assuntos
Proteínas de Ligação a Calmodulina/genética , Biossíntese de Proteínas/fisiologia , Ribossomos/fisiologia , Proteínas de Ligação a Calmodulina/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Nat Commun ; 11(1): 2587, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32444616

RESUMO

The gut microbiota metabolizes drugs and alters their efficacy and toxicity. Diet alters drugs, the metabolism of the microbiota, and the host. However, whether diet-triggered metabolic changes in the microbiota can alter drug responses in the host has been largely unexplored. Here we show that dietary thymidine and serine enhance 5-fluoro 2'deoxyuridine (FUdR) toxicity in C. elegans through different microbial mechanisms. Thymidine promotes microbial conversion of the prodrug FUdR into toxic 5-fluorouridine-5'-monophosphate (FUMP), leading to enhanced host death associated with mitochondrial RNA and DNA depletion, and lethal activation of autophagy. By contrast, serine does not alter FUdR metabolism. Instead, serine alters E. coli's 1C-metabolism, reduces the provision of nucleotides to the host, and exacerbates DNA toxicity and host death without mitochondrial RNA or DNA depletion; moreover, autophagy promotes survival in this condition. This work implies that diet-microbe interactions can alter the host response to drugs without altering the drug or the host.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Floxuridina/toxicidade , Interações Alimento-Droga , Microbioma Gastrointestinal/efeitos dos fármacos , Serina/farmacologia , Animais , Caenorhabditis elegans/microbiologia , Caenorhabditis elegans/fisiologia , Suplementos Nutricionais , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Floxuridina/farmacocinética , Ácido Fólico/metabolismo , Microbioma Gastrointestinal/fisiologia , Timidina/análogos & derivados , Timidina/metabolismo , Timidina/farmacocinética , Timidina/farmacologia , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA