Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120420, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387358

RESUMO

Recent observations have highlighted the rapidly growing prevalence of emerging contaminants such as Imidacloprid (IMI) within our environment. These insecticidal pollutants, coexisting with more traditional contaminants, have become predominant in aquatic systems, posing risks to both human and ecological well-being. Among the various wastewater treatment approaches tested, biofilm reactors are currently gaining prominence. In this study, we employed an Algae-Bacteria Biofilm Reactor (ABBR) to concurrently address both conventional and emergent contaminants, specifically IMI, over an extended timeframe. Following a 60-day assessment, the ABBR consistently demonstrated removal efficiencies exceeding 85% for total dissolved nitrogen, ammonia nitrogen, and total dissolved phosphorus, and also achieved removal efficacy for the soluble chemical oxygen demand (sCOD). Despite the removal efficiency of IMI (with initial concentration is 1.0 mg/L) in ABBR showed a gradual decline over the extended period, it remained consistently effective over 50% due to the microalgae-mediated free radical reactions, indicating the ABBR's sustained efficiency in long-duration operations. Additionally, applying some non-conventional modifications, like aeration removal and reducing light exposure, demonstrated minimal impact on the reactor's pollutant removal efficiencies, achieving comparable results to the control group (which utilized aeration with a 14:10 light/dark ratio), 0.92 kW h/L/d of electricity can be saved economically, which accentuated the potential for energy conservation. An in-depth analysis of the treated effluents from the ABBRs, using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique, uncovered four potential transformation pathways for IMI. Overall, our findings suggest that these optimized processes did not influence the transformation products of IMI, thereby reaffirming the viability of our proposed optimization.


Assuntos
Neonicotinoides , Nitrocompostos , Eliminação de Resíduos Líquidos , Águas Residuárias , Humanos , Eliminação de Resíduos Líquidos/métodos , Cromatografia Líquida , Reatores Biológicos/microbiologia , Espectrometria de Massas em Tandem , Bactérias/metabolismo , Nitrogênio/análise , Biofilmes
2.
Sci Total Environ ; 888: 164236, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37201839

RESUMO

This study aimed to explore the potential for transferring nutrients from municipal wastewater through the cultivation of biocrust cyanobacteria, since little is known regarding the growth and bioremediation performance of biocrust cyanobacteria in actual wastewater, especially their interaction with indigenous bacteria. Therefore, in this study, the biocrust cyanobacterium, Scytonema hyalinum was cultivated in municipal wastewater under different light intensities, to establish a biocrust cyanobacteria-indigenous bacteria (BCIB) co-culture system, in order to investigate its nutrient removal efficiency. Our results revealed that the cyanobacteria-bacteria consortium could remove up to 91.37 % and 98.86 % of dissolved nitrogen and phosphorus from the wastewater, respectively. The highest biomass accumulation (max. 6.31 mg chlorophyll-a L-1) and exopolysaccharide secretion (max. 21.90 mg L-1) were achieved under respective optimized light intensity (60 and 80 µmol m-2 s-1). High light intensity was found to increase exopolysaccharide secretion, but negatively impacted cyanobacterial growth and nutrient removal. Overall, in the established cultivation system, cyanobacteria accounted for 26-47 % of the total bacterial abundance, while proteobacteria consisted up to 50 % of the mixture. The composition and ratio of cyanobacteria to indigenous bacteria were shown to be altered by adjusting the light intensity of the system. Altogether, our results clearly illustrate the potential of the biocrust cyanobacterium S. hyalinum in establishing a BCIB cultivation system under different light intensity for wastewater treatment and other end-applications (e.g., biomass accumulation and exopolysaccharide secretion). This study presents an innovative strategy for transferring nutrients from wastewater to drylands through cyanobacterial cultivation and subsequent biocrust induction.


Assuntos
Cianobactérias , Águas Residuárias , Técnicas de Cocultura , Biomassa , Nutrientes
3.
Environ Sci Pollut Res Int ; 30(20): 58226-58242, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36977879

RESUMO

Doxorubicin (DOX) is a potent anticancer drug with adverse cardiotoxic effects. Alginates are multifunctional biopolymers and polyelectrolytes derived from the cell walls of brown seaweeds. They are nontoxic, biocompatible, and biodegradable, and hence, utilized in several biomedical and pharmaceutical applications. Here, we investigated the potential cardioprotective effect of thermally treated sodium alginate (TTSA), which was extracted and purified from the seaweed Sargassum aquifolium, in treating acute DOX cardiotoxicity and apoptotic pathways in rats. UV-visible spectroscopy, Fourier-transform infrared, and nuclear magnetic resonance (1H-NMR) spectroscopy techniques were used to characterize TTSA. CK-MB and AST levels in sera samples were determined. The expression levels of Erk-2 (MAPK-1) and iNOS genes were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of Erk-2, anti-apoptotic p53, and caspase-3 were analyzed using western blotting and ELISA. For the in vivo studies, sixty rats were randomly divided equally into six groups and treated with DOX, followed by TTSA. We revealed that treatment with TTSA, which has low molecular weight and enhanced antioxidant properties, improved DOX-mediated cardiac dysfunction and alleviated DOX-induced myocardial apoptosis. Furthermore, TTSA exhibited a cardioprotective effect against DOX-induced cardiac toxicity, indicated by the increased expression of MAPK-1 (Erk2) and iNOS genes, which are implicated in the adaptive responses regulating DOX-induced myocardial damage. Moreover, TTSA significantly (p < 0.05) suppressed caspase-3 and upregulated anti-apoptotic protein p53 expression. TTSA also rebalanced the cardiomyocyte redox potential by significantly (p < 0.05) increasing the levels of endogenous antioxidant enzymes, including catalase and superoxide dismutase. Our findings suggest that TTSA, particularly at a dose of 400 mg/kg b.w., is a potential prophylactic supplement for treating acute DOX-linked cardiotoxicity.


Assuntos
Cardiotoxicidade , Sargassum , Ratos , Animais , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Cardiotoxicidade/prevenção & controle , Caspase 3/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo , Doxorrubicina/toxicidade , Antioxidantes/metabolismo , Apoptose
4.
Front Bioeng Biotechnol ; 11: 1329431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38362588

RESUMO

Introduction: Toxic microcystins (MCs) produced by cyanoprokaryotes -particularly by the cosmopolitan cyanobacterium Microcystis aeruginosa- pose adverse effects on aquatic organisms and their ecosystem and may also cause serious impacts on human health. These harmful monocyclic heptapeptides are the most prevalent cyanotoxins reported in freshwaters and must be eliminated for avoiding MCs release in receiving water bodies. Hence, this work aimed to test the efficacy of Moringa oleifera seeds water-based extract (MO) as a natural coagulant for removing cyanobacteria (especially M. aeruginosa), microalgae, and its associated MCs from pre-treated municipal wastewaters. Methodology: Four different MO coagulant doses (25, 50, 75 and 100 mg L-1) were investigated for cyanobacteria and microalgae removal by conventional coagulation assays and morphology-based taxonomy studies. Additionally, water turbidity and chlorophyll a (Chl a) content were also determined. Further, the presence and concentration of MCs soluble in water, remaining in the particulate fraction, and flocculated within the residual sludge were assessed using high-performance liquid chromatography coupled with diode array detection (HPLC-DAD). Results: The treatment with MO at 100 mg L-1 substantially reduced the number of cyanobacterial and microalgal species in the treated samples (average removal rate of 93.8% and 86.9%, respectively). These results agreed with a ∼44% concomitant reduction in Chl a and ∼97% reduction in water turbidity (a surrogate marker for suspended solids content). Notably, MCs concentrations in the treated water were significantly lowered to 0.6 ± 0.1 µg L-1 after addition of 100 mg L-1 MO. This value is below the WHO recommended limits for MCs presence in drinking water (<1.0 µg L-1). Discussion: The present study provides promising insights into the applicability of MO as a cost-effective, reliable, and sustainable natural coagulant, particularly for using in developing countries, to eliminate harmful cyanobacteria and cyanotoxins in municipal water treatment facilities.

5.
Molecules ; 27(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163940

RESUMO

Although a broad variety of classes of bioactive compounds have already been isolated from seaweeds of the genus Dictyota, most different species are still chemically and biologically unexplored. Dictyota species are well-known brown seaweeds belonging to the Dictyotaceae (Phaeophyta). The phytochemical composition within the genus Dictyota has recently received considerable interest, and a vast array of components, including diterpenes, sesquiterepenes, sterols, amino acids, as well as saturated and polyunsaturated fatty acids, have been characterized. The contribution of these valued metabolites to the biological potential, which includes anti-proliferative, anti-microbial, antiviral, antioxidant, anti-inflammatory, and anti-hyperpigmentation activities, of the genus Dictyota has also been explored. Therefore, this is the most comprehensive review, focusing on the published literature relevant to the chemically and pharmacologically diverse biopharmaceuticals isolated from different species of the genus Dictyota during the period from 1976 to now.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Biodiversidade , Produtos Biológicos/farmacologia , Phaeophyceae/química , Compostos Fitoquímicos/farmacologia
6.
Int J Environ Health Res ; 32(4): 752-771, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32705899

RESUMO

Thirty-two male Wistar albino rats were chosen to test the possible protective role of antioxidants of the edible seaweed Sargassum vulgare as a functional food additive to alleviate oxidative stress and toxicity associated with consumption of the artificial sweetener 'aspartame (ASP)'. Biochemical and spleen histopathological analyses of the orally ASP-administrated rats, at a dose of 500 mg/kg for one week daily, showed different apoptotic and inflammatory patterns. Rats treated with ASP and then supplemented orally with the S. vulgare-MeOH extract, at a dose of 150 mg/kg for three consecutive weeks daily, showed significant positive reactions in all investigated assays related to ASP consumption. The protective and immune-stimulant efficacy of S. vulgare-MeOH extract, inferred from combating oxidative stress-induced lipid peroxidation, modulating the low levels of the endogenous antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and of the thyroid hormones T3 and T4, attenuating the elevated levels of apoptotic CASP-3 and inflammatory biomarkers TNF-α and IL-6, as well as heat shock proteins (Hsp70), can be most likely ascribed to the synergistic effect of its potent antioxidant phenolics (mainly gallic, ferulic, salicylic, and chlorogenic, and p-coumaric acids) and flavonoids (rutin, kaempferol, and hesperidin). Mechanism of action of these natural antioxidants was discussed.


Assuntos
Ingredientes de Alimentos , Sargassum , Alga Marinha , Animais , Aspartame/farmacologia , Masculino , Estresse Oxidativo , Ratos , Ratos Wistar
7.
Int J Radiat Biol ; 98(2): 191-204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34694945

RESUMO

BACKGROUND: Oxidative stress and reactive oxygen species (ROS) are primarily responsible for the development of male infertility after exposure to γ-irradiation. The present work aimed to assess the ameliorative and therapeutic roles of the aqueous and ethanolic extracts of the edible seaweed Sargassum virgatum (S. virgatum) on spermatogenesis and infertility in γ-irradiated Wistar rats. MATERIALS AND METHODS: Induction of infertility was performed by exposing the rats to 137Cs-gamma rays, using a single dose of 3.5 Gy. γ-irradiated rats were given the S. virgatum ethanolic (S. virgatum-EtOH) and aqueous extracts intraperitoneally on a daily base for two consecutive weeks at doses of 100 and 400 mg/kg body weight (b.wt.) for each seaweed extract. Morphometric data of the testes, semen quality indices, antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GPx), and deoxyribonucleic acid (DNA) fragmentation were assessed. The results obtained were taken during two-time intervals of 15 and 60 days from the commencement of the algal treatments. In vitro antioxidant assays and polyphenolic compounds of S. virgatum were characterized. RESULTS: Significant negative changes in the semen quality and morphometric data of the testes, as well as remarkable DNA fragmentation, were detected in the irradiated rats compared to the control. The levels of the endogenous antioxidant enzymes (SOD, CAT, GSH, and GPx) were also significantly diminished. Nonetheless, treatments of γ-irradiated rats with the S. virgatum-EtOH and aqueous extracts significantly improved the above-mentioned enzymes, in addition to noteworthy amendments in the dimensions of the testes, the semen quality, as well as the DNA structure. CONCLUSIONS: The ameliorative potency of S. virgatum to cure γ-irradiation-induced male infertility, particularly 400 mg/kg ethanolic extract for 60 days, is the result of the consistent therapeutic interventions of its potent antioxidant and anti-apoptotic polyphenols, particularly protocatechuic, p-hydroxybenzoic, rosmarinic, chlorogenic, cinnamic and gentisic acids, as well as the flavonoids catechin, hesperidin, rutin and quercetin. Besides its high-value nutraceutical importance, S. virgatum could be a natural candidate for developing well-accepted radioprotectant products capable of treating γ-irradiation-induced male infertility.


Assuntos
Infertilidade Masculina , Sargassum , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catalase/metabolismo , DNA , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Estresse Oxidativo/efeitos da radiação , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Sargassum/metabolismo , Análise do Sêmen , Superóxido Dismutase/metabolismo , Testículo/efeitos da radiação
8.
Plants (Basel) ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200166

RESUMO

Present-day information available on the charophyte macroalgae in Egypt, including their phylogenetic affinities, remains largely incomplete. In this study, nine charophyte populations were collected from different aquatic biotopes across the Egyptian Western-Desert Oases and Sinai Peninsula. All populations were investigated using an integrative polyphasic approach including phylogenetic analyses inferred from the chloroplast-encoded gene (rbcL) and the internal transcribed spacer (ITS1) regions, in parallel with morphotaxonomic assignment, ultrastructure of the oospore walls, and autecology. The specimens identified belonged to the genera Chara, Nitella, and Tolypella, with predominance of the first genus to which five species were assigned though they presented some interesting aberrant taxonomic features: C. aspera, C. contraria, C. globata, C. tomentosa, and C. vulgaris. Based on our integrative study, the globally rare species C. globata was reported for the second time for the whole African continent. The genus Nitella was only represented by N. flagellifera, and based on the available literature, it is a new record for North Africa. Noteworthy, an interesting Tolypella sp., morphologically very similar to T. glomerata, was collected and characterized and finally designated with the working name 'Tolypella sp. PBA-1704 from a desert, freshwater wetland', mainly based on its concatenated rbcL+ITS1 phylogenetic position. This study not only improved our understanding on the diversity, biogeography and autecological preferences of charophytes in Egypt, but it also broadened our knowledge on this vulnerable algal group in North Africa, emphasizing the need of more in-depth research work in the future, particularly in the less-impacted desert habitats.

9.
J Phycol ; 54(3): 342-357, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29603234

RESUMO

The biodiversity of terrestrial algae is still grossly understudied, and African deserts in particular are barely touched in this respect. Here, four coccoid green algae from oases in the Western Desert of Egypt were characterized using a combination of morphotaxonomic, ecological and 18S rDNA data, with additional carotenoid and lipid analyses for two of the strains. Three strains were identified as affiliated with known taxa: Mychonastes sp., Asterarcys sp. (first report of this genus from a desert soil), and Stichococcus cf. deasonii. The fourth strain is proposed to represent a new cryptic genus Pharao gen. nov., with the type species P. desertorum sp. nov. The new taxon is sister to the clade of uncharacterized North American desert strains of Radiococcaceae (Chlorophyceae, Chlorophyta). The pigment profile of P. desertorum gen. et sp. nov. revealed carotenoids and chlorophylls typical of green algae. Bioorganic analysis showed a complex lipidome based on phospho- (PC), galacto- (MGDG and DGDG), betaine- (DGTS), and sulfoquinovosyl- (SQDG) membrane lipids, besides significant amounts of storage neutral lipids such as diacyl- (DAG) and triacylglycerols (TAG). The presence of saturated alkyl chains within all the membrane lipid classes in P. desertorum and Asterarcys sp. appears to reflect the need to maintain membrane fluidity and viscosity. In summary, African deserts likely still harbor new taxa to be described, and lipidomic analyses of such taxa may provide clues about their ability to survive in the extremely harsh desert habitats.


Assuntos
Clorofíceas/classificação , Características de História de Vida , Clorofíceas/citologia , Clorofíceas/genética , Clorofíceas/fisiologia , Cromatografia Líquida , Clima Desértico , Egito , Filogenia , RNA de Algas/análise , RNA Ribossômico 18S/análise , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA