RESUMO
Supramolecular medicine refers to the formulation of therapeutic and diagnostic agents through supramolecular techniques, amid treating, diagnosing, and preventing disease. Recently, there has been growing interest in developing metal nanoparticles (MNPs)-amyloid hybrid materials, which have the potential to revolutionize medical applications. Furthermore, the development of MNPs-amyloid hydrogel/scaffold supramolecules represents a promising new direction in amyloid nanotechnology, with potential applications in tissue engineering and biomedicine. This review first provides a brief introduction to the formation process of protein amyloid aggregates and their unique nanostructures. Subsequently, we focused on recent investigations into the use of MNPs-amyloid hybrid materials in tissue engineering and biomedicine. We anticipate that MNPs-amyloid supramolecular materials will pave the way for new functional materials in medical science, particularly in the field of tissue engineering.
Assuntos
Proteínas Amiloidogênicas , Sistemas de Liberação de Medicamentos , Nanopartículas Metálicas , Engenharia Tecidual , Engenharia Tecidual/métodos , Nanopartículas Metálicas/química , Sistemas de Liberação de Medicamentos/métodos , Agregados Proteicos , Alicerces Teciduais/química , Proteínas Amiloidogênicas/química , Dobramento de Proteína , Conformação Proteica , HumanosRESUMO
Tyrosinases (TYR) play a key role in melanin biosynthesis by catalyzing two reactions: monophenolase and diphenolase activities. Despite low amino acid sequence homology, TYRs from various organisms (from bacteria to humans) have similar active site architectures and catalytic mechanisms. The active site of the TYRs contains two copper ions coordinated by histidine (His) residues. The catalytic mechanism of TYRs involves electron transfer between copper sites, leading to the hydroxylation of monophenolic compounds to diphenols and the subsequent oxidation of these to corresponding dopaquinones. Although extensive studies have been conducted on the structure, catalytic mechanism, and enzymatic capabilities of TYRs, some mechanistic aspects are still debated. This chapter will delve into the structure of the active site, catalytic function, and inhibition mechanism of TYRs. The goal is to improve our understanding of the molecular mechanisms underlying TYR activity. This knowledge can help in developing new strategies to modulate TYR function and potentially treat diseases linked to melanin dysregulation.
Assuntos
Domínio Catalítico , Monofenol Mono-Oxigenase , Humanos , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/química , Melaninas/metabolismo , Melaninas/biossíntese , Animais , Catálise , Biocatálise , OxirreduçãoRESUMO
Alzheimer's disease is the primary neurodegenerative disease affecting the elderly population. Despite the first description of its pathology over a century ago, its precise cause and molecular mechanism remain unknown. Numerous factors, including beta-amyloid, tau protein, the APOEε4 gene, and different metals, have been extensively investigated in relation to this disease. However, none of them have been proven to have a decisive causal relationship. Furthermore, no single theory has successfully integrated these puzzle pieces thus far. In this review article, we propose the most probable molecular mechanism for AD, which clearly shows the relationship between the main aspects of the disease, and addresses fundamental questions such as: Why is aging the major risk factor for the disease? Are amyloid plaques and tau tangles the causes or consequences of AD? Why are the distributions of senile plaques and tau tangles in the brain different and independent of each other? Why is the APOEε4 gene a risk factor for AD? Finally, why is the disease more prevalent in women?
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Proteínas tau , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fatores de RiscoRESUMO
The abnormal deposition of tau protein is one of the critical causes of tauopathies including Alzheimer's disease (AD). In recent years, there has been great interest in the use of essential oils and volatile compounds in aromatherapy for treating AD, since volatile compounds can directly reach the brain through intranasal administration. The volatile compounds α-asarone (ASA) and ß-caryophyllene (BCP) have revealed various important neuroprotective properties, useful in treating AD. In this study, the volatile compounds ASA and BCP were assessed for their effectiveness in preventing tau fibrillation, disassembly of pre-formed tau fibrils, and disaggregation of tau aggregates. SDS-PAGE and AFM analyses revealed that ASA and BCP inhibited tau fibrillation/aggregation and decreased the mean size of tau oligomers. Tau samples treated with ASA and BCP, showed a reduction in ThT and ANS fluorescence intensities, and a decrease in the ß-sheet content. Additionally, ASA and BCP disassembled the pre-formed tau fibrils to the granular and linear oligomeric intermediates. Treatment of neuroblastoma SH-SY5Y cells with tau samples treated with ASA and BCP, revealed protective effects as shown by reduced toxicity of the cells, due to the inhibition of tau fibrillation/aggregation. Overall, ASA and BCP appeared to be promising therapeutic candidates for AD.
Assuntos
Derivados de Alilbenzenos , Doença de Alzheimer , Anisóis , Sesquiterpenos Policíclicos , Proteínas tau , Proteínas tau/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos Policíclicos/química , Derivados de Alilbenzenos/farmacologia , Derivados de Alilbenzenos/química , Anisóis/farmacologia , Anisóis/química , Linhagem Celular Tumoral , Agregados Proteicos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Sesquiterpenos/farmacologia , Sesquiterpenos/químicaRESUMO
This article delves into the interaction between HSA protein and synthesized platinum complexes, with formula: [Pt(Propyl-NH2)2(Propylglycine)]NO3 and [Pt(Tertpentyl-NH2)2(Tertpentylglycine)]NO3, through a range of methods, including spectroscopic (UV-visible, fluorescence, synchronous fluorescence and CD) analysis and computational modeling (molecular docking and MD simulation). The binding constants, the number of binding sites, and thermodynamic parameters were obtained at 25 to 37 °C. The study found that both complexes could bind with HSA (moderate affinity for Tertpentyl and strong affinity for Propyl derivatives) and occupied one binding site in HSA (validated with, Stern-Volmer, Job-plots, and molecular docking investigations) located in subdomain IIA. The binding mechanisms of both mentioned Pt(II) agents were different, with the Propyl derivative predominantly using van der Waals forces and hydrogen bond interactions with a static quenching mechanism and the Tertpentyl derivative mainly utilizing hydrophobic force with a dynamic quenching mechanism. However, the two ligands affected protein differently; the Tertpentyl complex did not significantly alter the protein structure upon binding, as evidenced by synchronous fluorescence spectroscopy (SFS), CD spectroscopy, and MD analysis. The outcome helps in understanding the binding mechanisms and structural modifications induced by the ligands, which could aid in the innovation of more effective and stable Pt(II)-based drugs.
Assuntos
Glicina , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana , Termodinâmica , Humanos , Glicina/química , Glicina/análogos & derivados , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Sítios de Ligação , Simulação de Dinâmica Molecular , Espectrometria de Fluorescência , Ligantes , Platina/químicaRESUMO
The substitution of leucine to proline at position 39 (p.P39L) in human αB-crystallin (αB-Cry) has been associated with conflicting interpretations of pathogenicity in cataracts and cardiomyopathy. This study aimed to investigate the effects of the p.P39L mutation on the structural and functional features of human αB-Cry. The mutant protein was expressed in Escherichia coli (E. coli) and purified using anion exchange chromatography. We employed a wide range of spectroscopic analyses, gel electrophoresis, transmission electron microscopy (TEM), and atomic force microscopy (AFM) techniques to investigate the structure, function, stability, and fibrillation propensity of the mutant protein. The p.P39L mutation caused significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry and increased the thermal stability of the protein. The mutant αB-Cry exhibited an increased chaperone activity and an altered oligomeric size distribution, along with an increased propensity to form amyloid aggregates. It is worth mentioning, increased chaperone activity has important positive and negative effects on damaged cells related to cataracts and cardiomyopathy, particularly by interfering in the process of apoptosis. Despite the apparent positive nature of the increased chaperone activity, it is also linked to adverse consequences. This study provides important insights into the effect of proline substitution by leucine at the N-terminal region on the dual nature of chaperone activity in human αB-Cry, which can act as a double-edged sword.
Assuntos
Cardiomiopatias , Catarata , Cristalinas , Humanos , Catarata/genética , Cristalinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Leucina , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/metabolismo , Prolina/genética , Estrutura Secundária de ProteínaRESUMO
Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.
Assuntos
Barreira Hematoencefálica , Peptídeos Penetradores de Células , Sistemas de Liberação de Medicamentos , Nanopartículas , Doenças Neurodegenerativas , Doença de Parkinson , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/administração & dosagem , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológicoRESUMO
Green tea polyphenols (GTPs), particularly epigallocatechin-3-gallate, stand out among natural small molecules screened for their ability to target protein aggregates due to their potent anti-amyloidogenic and neuroprotective activities against various disease-related peptides and proteins. However, the clinical applications of GTPs in amyloid-related diseases have been greatly limited by drawbacks such as poor chemical stability and low bioavailability. To address these limitations, this study utilized an Iranian green tea polyphenolic extract as a reducing agent to neutralize silver ions and facilitate the formation of silver nanoparticle capped by GTPs (GTPs-capped AgNPs). The results obtained from this study demonstrate that GTPs-capped AgNPs are more effective than free GTPs at inhibiting amyloid fibrillation and reducing cytotoxicity induced by amyloid fibrils of human insulin and α-synuclein (α-syn). This improved efficacy is attributed to the increased surface/volume ratio of GTPs-capped AgNPs, which can enhance their binding affinity to amyloidogenic species and boosts their antioxidant activity. The mechanism by which GTPs-capped AgNPs inhibit amyloid fibrillation appears to vary depending on the target protein. For structured protein human insulin, GTPs-capped AgNPs hinder fibrillation by constraining the protein in its native-like state. In contrast, GTPs-capped AgNPs modulate fibrillation of intrinsically disordered proteins like α-syn by redirecting the aggregation pathway towards the formation of non-toxic off-pathway oligomers or amorphous aggregates. These findings highlight polyphenol-functionalized nanoparticles as a promising strategy for targeting protein aggregates associated with neurodegenerative diseases.
Assuntos
Nanopartículas Metálicas , alfa-Sinucleína , Humanos , Prata/farmacologia , Prata/química , Agregados Proteicos , Antioxidantes , Irã (Geográfico) , Amiloide/metabolismo , Polifenóis/farmacologia , Proteínas Amiloidogênicas , Insulina , Chá/químicaRESUMO
αB-Crystallin (αB-Cry) is a small heat shock protein known for its protective role, with an adaptable structure that responds to environmental changes through oligomeric dynamics. Cu(II) ions are crucial for cellular processes but excessive amounts are linked to diseases like cataracts and neurodegeneration. This study investigated how optimal and detrimental Cu(II) concentrations affect αB-Cry oligomers and their chaperone activity, within the potassium-regulated ionic-strength environment. Techniques including isothermal titration calorimetry, differential scanning calorimetry, fluorescence spectroscopy, inductively coupled plasma atomic emission spectroscopy, cyclic voltammetry, dynamic light scattering, circular dichroism, and MTT assay were employed and complemented by computational methods. Results showed that potassium ions affected αB-Cry's structure, promoting Cu(II) binding at multiple sites and scavenging ability, and inhibiting ion redox reactions. Low concentrations of Cu(II), through modifications of oligomeric interfaces, induce regulation of surface charge and hydrophobicity, resulting in an increase in chaperone activity. Subunit dynamics were regulated, maintaining stable interfaces, thereby inhibiting further aggregation and allowing the functional reversion to oligomers after stress. High Cu(II) disrupted charge/hydrophobicity balance, sewing sizable oligomers together through subunit-subunit interactions, suppressing oligomer dissociation, and reducing chaperone efficiency. This study offers insights into how Cu(II) and potassium ions influence αB-Cry, advancing our understanding of Cu(II)-related diseases.
Assuntos
Cobre , Cadeia B de alfa-Cristalina , Humanos , Cobre/química , Cadeia B de alfa-Cristalina/química , Chaperonas Moleculares , Homeostase , ÍonsRESUMO
The process of mechanically stirred membrane reactor containing the suspension of horseradish peroxidase (HRP) immobilized on synthesized nanocomposite (Tau-SiO2@Fe3O4-GO) was designed for continuous degradation of tetracycline. The immobilized HRP was characterized in terms of kinetic parameters and catalytic activities as these parameters were improved highly through immobilization. The stability indices including pH and temperature were investigated in parallel. The immobilized HRP was more tolerable to pH changes as compared to free HRP and the optimum temperature obtained at 40 °C. The reusability of HRP was promoted by immobilization as far as 70% of initial activity after ten cycles. The enzymatic degradation of optimum concentration of tetracycline was carried out in batch condition and 100% of tetracycline removed after 30 min. The results also showed that higher concentration of H2O2 exhibited more oxidation of tetracycline. The optimal ratio of HRP/H2O2 was also obtained at 0.005. The simultaneous process including separation and the biocatalytic degradation established in the membrane stirrer reactor concluded that no amount of tetracycline was observed in the permeate stream coming from the membrane after 30 min of operation.
Assuntos
Reatores Biológicos , Enzimas Imobilizadas , Peroxidase do Rábano Silvestre , Nanocompostos , Dióxido de Silício , Tetraciclina , Águas Residuárias , Enzimas Imobilizadas/metabolismo , Enzimas Imobilizadas/química , Nanocompostos/química , Tetraciclina/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Dióxido de Silício/química , Águas Residuárias/química , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água , Cinética , Peróxido de Hidrogênio/química , Membranas Artificiais , Temperatura , Antibacterianos/químicaRESUMO
αB-Crystallin (αB-Cry) is expressed in many tissues, and mutations in this protein are linked to various diseases, including cataracts, Alzheimer's disease, Parkinson's disease, and several types of myopathies and cardiomyopathies. The p.D109G mutation, which substitutes a conserved aspartate residue involved in the interchain salt bridges, with glycine leads to the development of both restrictive cardiomyopathy (RCM) and skeletal myopathy. In this study, we generated this mutation in the α-Cry domain (ACD) which is crucial for forming the active chaperone dimeric state, using site-directed mutagenesis. After inducing expression in the bacterial host, we purified the mutant and wild-type recombinant proteins using anion exchange chromatography. Various spectroscopic evaluations revealed significant changes in the secondary, tertiary, and quaternary structures of human αB-Cry caused by this mutation. Furthermore, this pathogenic mutation led to the formation of protein oligomers with larger sizes than those of the wild-type protein counterpart. The mutant protein also exhibited increased chaperone activity and decreased chemical, thermal, and proteolytic stability. Atomic force microscopy (AFM), transmission electron microscopy (TEM), and fluorescence microscopy (FM) demonstrated that p.D109G mutant protein is more prone to forming amyloid aggregates. The misfolding associated with the p.D109G mutation may result in abnormal interactions of human αB-Cry with its natural partners (e.g., desmin), leading to the formation of protein aggregates. These aggregates can interfere with normal cellular processes and may contribute to muscle cell dysfunction and damage, resulting in the pathogenic involvement of the p.D109G mutant protein in restrictive cardiomyopathy and skeletal myopathy.
Assuntos
Cardiomiopatia Restritiva , Cristalinas , Doenças Musculares , Humanos , Cristalinas/química , Mutação , Doenças Musculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/química , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/químicaRESUMO
Our study aimed to investigate the effects of ultrasound on the fibrillation kinetics of HEWL (hen egg white lysozyme) and its physicochemical properties. Ultrasound, a mechanical wave, can induce conformational changes in proteins. To achieve this, we developed an ultrasound exposure system and used various biophysical techniques, including ThT fluorescence spectroscopy, ATR-FTIR, Far-UV CD spectrophotometry, Fluorescence microscopy, UV-spectroscopy, and seeding experiments. Our results revealed that higher frequencies significantly accelerated the fibrillation of lysozyme by unfolding the native protein and promoting the fibrillation process, thereby reducing the lag time. We observed a change in the secondary structure of the sonicated protein change to the ß-structure, but there was no difference in the Tm of native and sonicated proteins. Furthermore, we found that higher ultrasound frequencies had a greater seeding effect. We propose that the effect of frequency can be explained by the impact of the Reynolds number, and for the Megahertz frequency range, we are almost at the transition regime of turbulence. Our results suggest that laminar flows may not induce any significant change in the fibrillation kinetics, while turbulent flows may affect the process.
Assuntos
Clara de Ovo , Muramidase , Animais , Muramidase/química , Clara de Ovo/química , Ultrassom , Estrutura Secundária de Proteína , Espectrometria de Fluorescência , Amiloide/química , Galinhas/metabolismo , CinéticaRESUMO
Protein-based therapeutics have revolutionized the pharmaceutical industry and become vital components in the development of future therapeutics. They offer several advantages over traditional small molecule drugs, including high affinity, potency and specificity, while demonstrating low toxicity and minimal adverse effects. However, the development and manufacturing processes of protein-based therapeutics presents challenges related to protein folding, purification, stability and immunogenicity that should be addressed. These proteins, like other biological molecules, are prone to chemical and physical instabilities. The stability of protein-based drugs throughout the entire manufacturing, storage and delivery process is essential. The occurrence of structural instability resulting from misfolding, unfolding, and modifications, as well as aggregation, poses a significant risk to the efficacy of these drugs, overshadowing their promising attributes. Gaining insight into structural alterations caused by aggregation and their impact on immunogenicity is vital for the advancement and refinement of protein therapeutics. Hence, in this review, we have discussed some features of protein aggregation during production, formulation and storage as well as stabilization strategies in protein engineering and computational methods to prevent aggregation.
RESUMO
Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.
Assuntos
Hiperpigmentação , Preparações Clareadoras de Pele , Humanos , Hiperpigmentação/tratamento farmacológico , Melaninas/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Pele , Preparações Clareadoras de Pele/uso terapêutico , Preparações Clareadoras de Pele/farmacologiaRESUMO
The use of hydrogel dressings has become increasingly popular as a scaffold for skin tissue engineering. Herein, we have developed an innovative wound dressing using chitosan, fibrinogen, nisin, and EDTA as an effective antibacterial scaffold for wound treatment. The structural and functional characteristics of the hydrogel, including morphology, mechanical strength, drug encapsulation and release, swelling behaviors, blood coagulation, cytotoxicity, and antibacterial activity, were studied. Spectroscopic studies indicated that the attachment of chitosan to fibrinogen is associated with minimal change in its secondary structure; subsequently, at higher temperatures, it is expected to preserve fibrinogen's conformational stability. Mechanical and blood coagulation analyses indicated that the incorporation of fibrinogen into the hydrogel resulted in accelerated clotting and enhanced mechanical properties. Our cell studies showed biocompatibility and non-toxicity of the hydrogel along with the promotion of cell migration. In addition, the prepared hydrogel indicated an antibacterial behavior against both Gram-positive and Gram-negative bacteria. Interestingly, the in vivo data revealed enhanced tissue regeneration and recovery within 17 days in the studied animals. Taken together, the results obtained from in vitro and histological assessments indicate that this innovatively designed hydrogel shows good potential as a candidate for wound healing.
Assuntos
Antibacterianos , Quitosana , Animais , Antibacterianos/farmacologia , Antibacterianos/química , Hidrogéis/farmacologia , Hidrogéis/química , Quitosana/farmacologia , Quitosana/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Cicatrização , Bandagens , Coagulação Sanguínea , FibrinogênioRESUMO
The interplay between α-synuclein (α-syn) and catechols plays a central role in Parkinson's disease. This may be related to the modulating effects of catechols on the various aspects of α-syn fibrillization. Some of these effects may be attributed to the membrane-binding properties of the protein. In this work, we compare the effect of some catechols, including dopamine, epinephrine, DOPAL, and levodopa in micromolar concentrations, on the in vitro cytotoxicity of α-syn fibrils on human neuroblastoma SH-SY5Y cells. The study was followed by comparing the interactions of resulting structures with rat brain mitochondria used as an in vitro biological model. The obtained results demonstrate that catechols-induced structures have lost their cytotoxicity mimicking apoptotic cell death mediated by α-syn aggregates in different proportions. Moreover, α-syn fibrils-induced mitochondrial dysfunction, evaluated by a range of biochemical assays, was modulated by catechols-modified α-syn oligomers in different manners, as levodopa and DOPAL demonstrated the maximal and minimal effects, respectively. The plausible mechanism causing the inhibition of α-syn cytotoxic fibrillization and mitochondrial dysfunction by catechols is discussed. Taken together, we propose that catechols can prevent the cytotoxic assembly of α-syn and its destructive effects on mitochondria at various stages, suggesting that decreased levels of catechols in dopaminergic neurons might accelerate the α-syn cytotoxicity and mitochondrial dysfunction implicating Parkinson's disease.
Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Levodopa , Catecóis/farmacologia , Amiloide/metabolismo , Proteínas AmiloidogênicasRESUMO
Considering the central role of oxidative stress in the onset and progress of Parkinson's diseases (PD), search for compounds with antioxidant properties has attracted a growing body of attention. Here, we compare the neuroprotective effect of bulk and nano forms of the polyphenolic fraction of propolis (PFP) against rotenone-induced cellular and animal models of PD. Mass spectrometric analysis of PFP confirmed the presence of multiple polyphenols including kaempferol, naringenin, coumaric acid, vanillic acid, and ferulic acid. In vitro cellular experiments indicate the improved efficiency of the nano form, compared to the bulk form, of PFP in attenuating rotenone-induced cytotoxicity characterized by a decrease in cell viability, release of lactate dehydrogenase, increased ROS generation, depolarization of the mitochondrial membrane, decreased antioxidant enzyme activity, and apoptosis induction. In vivo experiments revealed that while no significant neuroprotection was observed relating to the bulk form, PFP nanosheets were very effective in protecting animals, as evidenced by the improved behavioral and neurochemical parameters, including decreased lipid peroxidation, increased GSH content, and antioxidant enzyme activity enhancement. We suggest that improved neuroprotective effects of PFP nanosheets may be attributed to their increased water solubility and enrichment with oxygen-containing functional groups (such as OH and COOH), leading to increased antioxidant activity of these compounds.
Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Própole , Animais , Doença de Parkinson/tratamento farmacológico , Rotenona/toxicidade , Fármacos Neuroprotetores/farmacologia , Própole/farmacologia , Antioxidantes/farmacologia , Polifenóis/farmacologia , Estresse Oxidativo , Modelos Animais de DoençasRESUMO
Multidrug resistance of bacteria and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, make it urgent to develop new antibiotics. Here, we evaluate the antibacterial and anti-biofilm properties of ticlopidine (TP), an anti-platelet aggregation drug, TP showed antibacterial activity against both gram-positive (MRSA) and gram-negative (E. coli, and P. aeruginosa) bacteria over a long treatment period. TP significantly reduced the survival of gram-negative bacteria in human blood though impact on gram-positives was more limited. TP may cause death in MRSA by inhibiting staphyloxanthin pigment synthesis, leading to oxidative stress, while scanning electron microscopy imaging indicate a loss of membrane integrity, damage, and consequent death due to lysis in gram-negative bacteria. TP showed good anti-biofilm activity against P. aeruginosa and MRSA, and a stronger biofilm degradation activity on P. aeruginosa compared to MRSA. Measuring fluorescence of the amyloid-reporter Thioflavin T (ThT) in biofilm implicated inhibition of amyloid formation as part of TP activity. This was confirmed by assays on the purified protein in P. aeruginosa, FapC, whose fibrillation kinetics was inhibited by TP. TP prolonged the lag phase of aggregation and reduced the subsequent growth rate and prolonging the lag phase to very long times provides ample opportunity to exert TP's antibacterial effect. We conclude that TP shows activity as an antibiotic against both gram-positive and gram-negative bacteria thanks to a broad range of activities, targeting bacterial metabolic processes, cellular structures and the biofilm matrix.
Assuntos
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas , BiofilmesRESUMO
Breast cancer is one of the most common malignancies and a leading cause of cancer-related mortality among women worldwide. The elements of group XIV in the periodic table exhibit a wide range of chemical manners. Recently, there have been remarkable developments in the field of nanobiomedical research, especially in the application of engineered nanomaterials in biomedical applications. In this review, we concentrate on the recent investigations on the antiproliferative effects of nanomaterials of the elements of group XIV in the periodic table on breast cancer cells. In this review, the data available on nanomaterials of group XIV for breast cancer treatment has been documented, providing a useful insight into tumor biology and nano-bio interactions to develop more effective nanotherapeutics for cancer patients.
RESUMO
Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced ß-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 µM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.