Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(19)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34640931

RESUMO

The exponential increase in social networks has led to emergent convergence of cyber-physical systems (CPS) and social computing, accelerating the creation of smart communities and smart organizations and enabling the concept of cyber-physical social systems. Social media platforms have made a significant contribution to what we call human behavior modeling. This paper presents a novel approach to developing a users' segmentation tool for the Romanian language, based on the four DISC personality types, based on social media statement analysis. We propose and design the ontological modeling approach of the specific vocabulary for each personality and its mapping with text from posts on social networks. This research proposal adds significant value both in terms of scientific and technological contributions (by developing semantic technologies and tools), as well as in terms of business, social and economic impact (by supporting the investigation of smart communities in the context of cyber-physical social systems). For the validation of the model developed we used a dataset of almost 2000 posts retrieved from 10 social medial accounts (Facebook and Twitter) and we have obtained an accuracy of over 90% in identifying the personality profile of the users.


Assuntos
Mídias Sociais , Humanos , Personalidade , Semântica , Rede Social
2.
Netw Syst Med ; 4(1): 2-50, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33659919

RESUMO

Background: Systems Medicine is a novel approach to medicine, that is, an interdisciplinary field that considers the human body as a system, composed of multiple parts and of complex relationships at multiple levels, and further integrated into an environment. Exploring Systems Medicine implies understanding and combining concepts coming from diametral different fields, including medicine, biology, statistics, modeling and simulation, and data science. Such heterogeneity leads to semantic issues, which may slow down implementation and fruitful interaction between these highly diverse fields. Methods: In this review, we collect and explain more than100 terms related to Systems Medicine. These include both modeling and data science terms and basic systems medicine terms, along with some synthetic definitions, examples of applications, and lists of relevant references. Results: This glossary aims at being a first aid kit for the Systems Medicine researcher facing an unfamiliar term, where he/she can get a first understanding of them, and, more importantly, examples and references for digging into the topic.

3.
Sensors (Basel) ; 20(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339295

RESUMO

Smart cities are complex, socio-technological systems built as a strongly connected System of Systems, whose functioning is driven by human-machine interactions and whose ultimate goals are the well-being of their inhabitants. Consequently, controlling a smart city is an objective that may be achieved by using a specific framework that integrates algorithmic control, intelligent control, cognitive control and especially human reasoning and communication. Among the many functions of a smart city, intelligent transportation is one of the most important, with specific restrictions and a high level of dynamics. This paper focuses on the application of a neuro-inspired control framework for urban traffic as a component of a complex system. It is a proof of concept for a systemic integrative approach to the global problem of smart city management and integrates a previously designed urban traffic control architecture (for the city of Bucharest) with the actual purpose of ensuring its proactivity by means of traffic flow prediction. Analyses of requirements and methods for prediction are performed in order to determine the best way for fulfilling the perception function of the architecture with respect to the traffic control problem definition. A parametric method and an AI-based method are discussed in order to predict the traffic flow, both in the short and long term, based on real data. A brief comparative analysis of the prediction performances is also presented.

4.
Sensors (Basel) ; 20(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207620

RESUMO

Currently there is not a single trusted infrastructure used for the exchange and storage of medical data along the healthcare value chain and, thus, there is no platform used for monitoring patients' traceability within the entire healthcare chain. This situation leads to difficult communication and increased procedural costs, and thus it limits healthcare players from developing a better understanding and know-how of patients' traceability that could further boost innovation and development of the best-fitted health services. PatientDataChain blockchain-based technology is a novel approach, based on a decentralized healthcare infrastructure that incorporates a trust layer in the healthcare value chain. Our aim was to provide an integrated vision based on interoperability principles, that relies on the usage of specific sensors from various wearable devices, allowing us to collect specific data from patients' medical records. Interconnecting different healthcare providers, the collected data is integrated into a unitary personal health records (PHR) system, where the patient is the owner of his/her data. The decentralized nature of PatientDataChain, based on blockchain technology, leveraged the proper context to create a novel and improved data-sharing and exchange system, which is secure, flexible, and reliable. This approach brings increased benefits to data confidentiality and privacy, while providing secure access to patient medical records. This paper presents the design, implementation, and experimental validation of our proposed system, called PatientDataChain. The original contributions of our paper include the definition of the concept of unifying the entire healthcare value chain, the design of the architectural model of the system, the development of the system components, as well as the validation through a proof of concept (PoC) conducted with a medical clinic from Bucharest, using a dataset of 100 patients and over 1000 transactions. The proof of concept demonstrated the feasibility of the model in integrating the personal health records from heterogeneous sources (healthcare systems and sensors) in a unified, decentralized PHR system, with enhanced data exchange among healthcare players.


Assuntos
Blockchain , Registros de Saúde Pessoal , Segurança Computacional , Confidencialidade , Registros Eletrônicos de Saúde , Humanos , Privacidade
5.
Sensors (Basel) ; 19(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614821

RESUMO

Large scale, complex, networked enterprises, as may be considered (trans)national energy systems, multi-national manufacturing enterprises, smart cities a.s.o. are structures that can be characterized as systems of systems (SoS) and, as such, require specific modelling paradigms and control architectures to ensure their successful running. Their main characteristic is the necessity of solving practically one-of-a-kind problems with respect to the external context and internal configuration, thus dealing with dynamically evolving flows of data and information. The paper introduces the concept of intelligent cyber-enterprise, as an integrating paradigm that uses information and knowledge dynamics, in order to model and control SoS, especially focusing on the importance of appropriately adapt external and internal perception of an enterprise through a new generation of sensorial systems-the perceptive interfaces. The authors analyze sensing and perception in relation to intelligent cyber enterprise model and propose an implementation for a perceptive system interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA