Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1188, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331837

RESUMO

Traditional fully-deterministic algorithms, which rely on physical equations and mathematical models, are the backbone of many scientific disciplines for decades. These algorithms are based on well-established principles and laws of physics, enabling a systematic and predictable approach to problem-solving. On the other hand, AI-based strategies emerge as a powerful tool for handling vast amounts of data and extracting patterns and relationships that might be challenging to identify through traditional algorithms. Here, we bridge these two realms by using AI to find an optimal mapping of meteorological features predicted two days ahead by the state-of-the-art numerical weather prediction model by the European Centre for Medium-range Weather Forecasts (ECMWF) into lightning flash occurrence. The prediction capability of the resulting AI-enhanced algorithm turns out to be significantly higher than that of the fully-deterministic algorithm employed in the ECMWF model. A remarkable Recall peak of about 95% within the 0-24 h forecast interval is obtained. This performance surpasses the 85% achieved by the ECMWF model at the same Precision of the AI algorithm.

2.
Sci Rep ; 12(1): 20049, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414648

RESUMO

The problem of nowcasting extreme weather events can be addressed by applying either numerical methods for the solution of dynamic model equations or data-driven artificial intelligence algorithms. Within this latter framework, the most used techniques rely on video prediction deep learning methods which take in input time series of radar reflectivity images to predict the next future sequence of reflectivity images, from which the predicted rainfall quantities are extrapolated. Differently from the previous works, the present paper proposes a deep learning method, exploiting videos of radar reflectivity frames as input and lightning data to realize a warning machine able to sound timely alarms of possible severe thunderstorm events. The problem is recast in a classification one in which the extreme events to be predicted are characterized by a an high level of precipitation and lightning density. From a technical viewpoint, the computational core of this approach is an ensemble learning method based on the recently introduced value-weighted skill scores for both transforming the probabilistic outcomes of the neural network into binary predictions and assessing the forecasting performance. Such value-weighted skill scores are particularly suitable for binary predictions performed over time since they take into account the time evolution of events and predictions paying attention to the value of the prediction for the forecaster. The result of this study is a warning machine validated against weather radar data recorded in the Liguria region, in Italy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA