Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(7)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37504611

RESUMO

In the model system for genetics, Drosophila melanogaster, sexual differentiation and male courtship behavior are controlled by sex-specific splicing of doublesex (dsx) and fruitless (fru). In vitro and in vivo studies showed that female-specific Transformer (TRA) and the non-sex-specific Transformer 2 (TRA2) splicing factors interact, forming a complex promoting dsx and fru female-specific splicing. TRA/TRA2 complex binds to 13 nt long sequence repeats in their pre-mRNAs. In the Mediterranean fruitfly Ceratitis capitata (Medfly), a major agricultural pest, which shares with Drosophila a ~120 million years old ancestor, Cctra and Cctra2 genes seem to promote female-specific splicing of Ccdsx and Ccfru, which contain conserved TRA/TRA2 binding repeats. Unlike Drosophila tra, Cctra autoregulates its female-specific splicing through these putative regulatory repeats. Here, a yeast two-hybrid assay shows that CcTRA interacts with CcTRA2, despite its high amino acid divergence compared to Drosophila TRA. Interestingly, CcTRA2 interacts with itself, as also observed for Drosophila TRA2. We also generated a three-dimensional model of the complex formed by CcTRA and CcTRA2 using predictive approaches based on Artificial Intelligence. This structure also identified an evolutionary and highly conserved putative TRA2 recognition motif in the TRA sequence. The Y2H approach, combined with powerful predictive tools of three-dimensional protein structures, could use helpful also in this and other insect species to understand the potential links between different upstream proteins acting as primary sex-determining signals and the conserved TRA and TRA2 transducers.

2.
Insect Biochem Mol Biol ; 151: 103873, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400424

RESUMO

The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Feminino , Masculino , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Processamento Alternativo , Insetos/metabolismo , Processos de Determinação Sexual , Genes de Insetos
3.
PLoS Negl Trop Dis ; 15(9): e0009698, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34529653

RESUMO

In the last decades, the colonization of Mediterranean Europe and of other temperate regions by Aedes albopictus created an unprecedented nuisance problem in highly infested areas and new public health threats due to the vector competence of the species. The Sterile Insect Technique (SIT) and the Incompatible Insect Technique (IIT) are insecticide-free mosquito-control methods, relying on mass release of irradiated/manipulated males, able to complement existing and only partially effective control tools. The validation of these approaches in the field requires appropriate experimental settings, possibly isolated to avoid mosquito immigration from other infested areas, and preliminary ecological and entomological data. We carried out a 4-year study in the island of Procida (Gulf of Naples, Italy) in strict collaboration with local administrators and citizens to estimate the temporal dynamics, spatial distribution, and population size of Ae. albopictus and the dispersal and survival of irradiated males. We applied ovitrap monitoring, geo-spatial analyses, mark-release-recapture technique, and a citizen-science approach. Results allow to predict the seasonal (from April to October, with peaks of 928-9,757 males/ha) and spatial distribution of the species, highlighting the capacity of Ae. albopictus population of Procida to colonize and maintain high frequencies in urban as well as in sylvatic inhabited environments. Irradiated males shown limited ability to disperse (mean daily distance travelled <60m) and daily survival estimates ranging between 0.80 and 0.95. Overall, the ecological characteristics of the island, the acquired knowledge on Ae. albopictus spatial and temporal distribution, the high human and Ae. albopictus densities and the positive attitude of the resident population in being active parts in innovative mosquito control projects provide the ground for evidence-based planning of the interventions and for the assessment of their effectiveness. In addition, the results highlight the value of creating synergies between research groups, local administrators, and citizens for affordable monitoring (and, in the future, control) of mosquito populations.


Assuntos
Aedes/fisiologia , Controle de Mosquitos/métodos , Aedes/crescimento & desenvolvimento , Distribuição Animal , Animais , Ecologia , Meio Ambiente , Feminino , Humanos , Ilhas , Itália , Masculino , Densidade Demográfica , Características de Residência , Estações do Ano
4.
BMC Genet ; 21(Suppl 2): 150, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33339496

RESUMO

BACKGROUND: Females of the Mediterranean fruit fly Ceratitis capitata (Medfly) are major agricultural pests, as they lay eggs into the fruit crops of hundreds of plant species. In Medfly, female sex determination is based on the activation of Cctransformer (Cctra). A maternal contribution of Cctra is required to activate Cctra itself in the XX embryos and to start and epigenetically maintain a Cctra positive feedback loop, by female-specific alternative splicing, leading to female development. In XY embryos, the male determining Maleness-on-the-Y gene (MoY) blocks this activation and Cctra produces male-specific transcripts encoding truncated CcTRA isoforms and male differentiation occurs. RESULTS: With the aim of inducing frameshift mutations in the first coding exon to disrupt both female-specific and shorter male-specific CcTRA open reading frames (ORF), we injected Cas9 ribonucleoproteins (Cas9 and single guide RNA, sgRNA) in embryos. As this approach leads to mostly monoallelic mutations, masculinization was expected only in G1 XX individuals carrying biallelic mutations, following crosses of G0 injected individuals. Surprisingly, these injections into XX-only embryos led to G0 adults that included not only XX females but also 50% of reverted fertile XX males. The G0 XX males expressed male-specific Cctra transcripts, suggesting full masculinization. Interestingly, out of six G0 XX males, four displayed the Cctra wild type sequence. This finding suggests that masculinization by Cas9-sgRNA injections was independent from its mutagenic activity. In line with this observation, embryonic targeting of Cctra in XX embryos by a dead Cas9 (enzymatically inactive, dCas9) also favoured a male-specific splicing of Cctra, in both embryos and adults. CONCLUSIONS: Our data suggest that the establishment of Cctra female-specific autoregulation during the early embryogenesis has been repressed in XX embryos by the transient binding of the Cas9-sgRNA on the first exon of the Cctra gene. This hypothesis is supported by the observation that the shift of Cctra splicing from female to male mode is induced also by dCas9. Collectively, the present findings corroborate the idea that a transient embryonic inactivation of Cctra is sufficient for male sex determination.


Assuntos
Sistemas CRISPR-Cas , Ceratitis capitata/genética , Processos de Determinação Sexual , Processamento Alternativo , Animais , Animais Geneticamente Modificados , Proteína 9 Associada à CRISPR , Feminino , Genes de Insetos , Masculino , RNA Guia de Cinetoplastídeos/genética
5.
Arch Insect Biochem Physiol ; 104(2): e21667, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32100335

RESUMO

The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), is the most destructive insect pest of olive cultivation, causing significant economic and production losses. Here, we present the establishment of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 methodology for gene disruption in this species. We performed targeted mutagenesis of the autosomal gene white (Bo-we), by injecting into early embryos in vitro preassembled and solubilized Cas9 ribonucleoprotein complexes loaded with two gene-specific single-guide RNAs. Gene disruption of Bo-we led to somatic mosaicism of the adult eye color. Large eye patches or even an entire eye lost the iridescent reddish color, indicating the successful biallelic mutagenesis in somatic cells. Cas9 induced either indels in each of the two simultaneously targeted Bo-we sites or a large deletion of the intervening region. This study demonstrates the first efficient implementation of the CRISPR/Cas9 technology in the olive fly, providing new opportunities towards the development of novel genetic tools for its control.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Proteínas de Insetos/genética , Mutagênese , Ribonucleoproteínas/genética , Tephritidae/genética , Animais
6.
Nat Commun ; 11(1): 932, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32071305

RESUMO

Regulation of male sexual differentiation by a Y chromosome-linked male determining factor (M-factor) is one of a diverse array of sex determination mechanisms found in insects. By deep sequencing of small RNAs from Bactrocera dorsalis early embryos, we identified an autosomal-derived microRNA, miR-1-3p, that has predicted target sites in the transformer gene (Bdtra) required for female sex determination. We further demonstrate by both in vitro and in vivo tests that miR-1-3p suppresses Bdtra expression. Injection of a miR-1-3p mimic in early embryos results in 87-92% phenotypic males, whereas knockdown of miR-1-3p by an inhibitor results in 67-77% phenotypic females. Finally, CRISPR/Cas9-mediated knockout of miR-1-3p results in the expression of female-specific splice variants of Bdtra and doublesex (Bddsx), and induced sex reversal of XY individuals into phenotypic females. These results indicate that miR-1-3p is required for male sex determination in early embryogenesis in B. dorsalis as an intermediate male determiner.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Diferenciação Sexual/genética , Tephritidae/fisiologia , Processamento Alternativo , Animais , Embrião não Mamífero , Feminino , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/genética , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Proteínas Nucleares/genética , Fatores de Tempo
7.
Front Plant Sci ; 10: 1359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736999

RESUMO

The MYB transcription factors DIVARICATA (DIV), DIV-and-RAD-Interacting-Factor (DRIF), and the small interfering peptide RADIALIS (RAD) can interact, forming a regulatory module that controls different plant developmental processes. In the snapdragon Antirrhinum majus, this module, together with the TCP transcription factor CYCLOIDEA (CYC), is responsible for the establishment of floral dorsoventral asymmetry. The spatial gene expression pattern of the OitDIV, OitDRIF, and OitRAD homologs of Orchis italica, an orchid with zygomorphic flowers, has suggested a possible conserved role of these genes in bilateral symmetry of the orchid flower. Here, we have identified four DRIF genes of orchids and have reconstructed their genomic organization and evolution. In addition, we found snapdragon transcriptional cis-regulatory elements of DIV and RAD loci generally conserved within the corresponding orchid orthologues. We have tested the biochemical interactions among OitDIV, OitDRIF1, and OitRAD of O. italica, showing that OitDRIF1 can interact both with OitDIV and OitRAD, whereas OitDIV and OitRAD do not directly interact, as in A. majus. The analysis of the quantitative expression profile of these MYB genes revealed that in zygomorphic orchid flowers, the DIV, DRIF1, and RAD transcripts are present at higher levels in the lip than in lateral inner tepals, whereas in peloric orchid flowers they show similar expression levels. These results indicate that MYB transcription factors could have a role in shaping zygomorphy of the orchid flower, potentially enriching the underlying orchid developmental code.

8.
Science ; 365(6460): 1457-1460, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31467189

RESUMO

In insects, rapidly evolving primary sex-determining signals are transduced by a conserved regulatory module controlling sexual differentiation. In the agricultural pest Ceratitis capitata (Mediterranean fruit fly, or Medfly), we identified a Y-linked gene, Maleness-on-the-Y (MoY), encoding a small protein that is necessary and sufficient for male development. Silencing or disruption of MoY in XY embryos causes feminization, whereas overexpression of MoY in XX embryos induces masculinization. Crosses between transformed XY females and XX males give rise to males and females, indicating that a Y chromosome can be transmitted by XY females. MoY is Y-linked and functionally conserved in other species of the Tephritidae family, highlighting its potential to serve as a tool for developing more effective control strategies against these major agricultural insect pests.


Assuntos
Ceratitis capitata/genética , Genes Ligados ao Cromossomo Y , Processos de Determinação Sexual , Cromossomo Y/genética , Animais , Sequência Conservada , Embrião não Mamífero , Feminino , Genes de Insetos , Masculino , Interferência de RNA
9.
BMC Genomics ; 20(1): 522, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238870

RESUMO

BACKGROUND: Phlebotomine sand flies (Diptera, Nematocera) are important vectors of several pathogens, including Leishmania parasites, causing serious diseases of humans and dogs. Despite their importance as disease vectors, most aspects of sand fly biology remain unknown including the molecular basis of their reproduction and sex determination, aspects also relevant for the development of novel vector control strategies. RESULTS: Using comparative genomics/transcriptomics data mining and transcriptional profiling, we identified the sex determining genes in phlebotomine sand flies and proposed the first model for the sex determination cascade of these insects. For all the genes identified, we produced manually curated gene models, developmental gene expression profile and performed evolutionary molecular analysis. We identified and characterized, for the first time in a Nematocera species, the transformer (tra) homolog which exhibits both conserved and novel features. The analysis of the tra locus in sand flies and its expression pattern suggest that this gene is able to autoregulate its own splicing, as observed in the fruit fly Ceratitis capitata and several other insect species. CONCLUSIONS: Our results permit to fill the gap about sex determination in sand flies, contribute to a better understanding of this developmental pathway in Nematocera and open the way for the identification of sex determining orthologs in other species of this important Diptera sub-order. Furthermore, the sex determination genes identified in our work also provide the opportunity of future biotechnological applications to control natural population of sand flies, reducing their impact on public health.


Assuntos
Evolução Molecular , Psychodidae/genética , Processos de Determinação Sexual/genética , Processamento Alternativo , Sequência de Aminoácidos , Animais , Mineração de Dados , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Proteínas de Insetos/química , Proteínas de Insetos/genética , Masculino , Filogenia , RNA Mensageiro/genética , Seleção Genética
10.
Sci Rep ; 7(1): 10061, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855635

RESUMO

The Mediterranean fruitfly Ceratitis capitata (medfly) is an invasive agricultural pest of high economic impact and has become an emerging model for developing new genetic control strategies as an alternative to insecticides. Here, we report the successful adaptation of CRISPR-Cas9-based gene disruption in the medfly by injecting in vitro pre-assembled, solubilized Cas9 ribonucleoprotein complexes (RNPs) loaded with gene-specific single guide RNAs (sgRNA) into early embryos. When targeting the eye pigmentation gene white eye (we), a high rate of somatic mosaicism in surviving G0 adults was observed. Germline transmission rate of mutated we alleles by G0 animals was on average above 52%, with individual cases achieving nearly 100%. We further recovered large deletions in the we gene when two sites were simultaneously targeted by two sgRNAs. CRISPR-Cas9 targeting of the Ceratitis ortholog of the Drosophila segmentation paired gene (Ccprd) caused segmental malformations in late embryos and in hatched larvae. Mutant phenotypes correlate with repair by non-homologous end-joining (NHEJ) lesions in the two targeted genes. This simple and highly effective Cas9 RNP-based gene editing to introduce mutations in C. capitata will significantly advance the design and development of new effective strategies for pest control management.


Assuntos
Sequência de Bases , Sistemas CRISPR-Cas , Ceratitis capitata/genética , Edição de Genes/métodos , Ribonucleoproteínas/genética , Deleção de Sequência , Alelos , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Ceratitis capitata/crescimento & desenvolvimento , Ceratitis capitata/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA por Junção de Extremidades , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Mutação em Linhagem Germinativa , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Controle de Pragas/métodos , Fenótipo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Ribonucleoproteínas/administração & dosagem , Ribonucleoproteínas/metabolismo
11.
Sci Rep ; 7(1): 4582, 2017 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-28676649

RESUMO

The classic brown body (bwb) mutation in the housefly Musca domestica impairs normal melanization of the adult cuticle. In Drosophila melanogaster, a reminiscent pigmentation defect results from mutations in the yellow gene encoding dopachrome conversion enzyme (DCE). Here, we demonstrate that the bwb locus structurally and functionally represents the yellow ortholog of Musca domestica, MdY. In bwb Musca strains, we identified two mutant MdY alleles that contain lesions predicted to result in premature truncation of the MdY open reading frame. We targeted wildtype MdY by CRISPR-Cas9 RNPs and generated new mutant alleles that fail to complement existing MdY alleles, genetically confirming that MdY is the bwb locus. We further found evidence for Cas9-mediated interchromosomal recombination between wildtype and mutant bwb alleles. Our work resolves the molecular identity of the classic bwb mutation in Musca domestica and establishes the feasibility of Cas9-mediated genome editing in the Musca model.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Moscas Domésticas/genética , Locos de Características Quantitativas , Característica Quantitativa Herdável , Animais , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Camundongos
13.
Genome Biol ; 17(1): 192, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27659211

RESUMO

BACKGROUND: The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. RESULTS: The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. CONCLUSIONS: The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution.


Assuntos
Evolução Biológica , Ceratitis capitata/genética , Genoma de Inseto , Anotação de Sequência Molecular , Animais , Animais Geneticamente Modificados/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Espécies Introduzidas , Controle Biológico de Vetores
14.
Pathog Glob Health ; 109(5): 207-20, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26369436

RESUMO

The draft genome sequence of Italian specimens of the Asian tiger mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae) was determined using a standard NGS (next generation sequencing) approach. The size of the assembled genome is comparable to that of Aedes aegypti; the two mosquitoes are also similar as far as the high content of repetitive DNA is concerned, most of which is made up of transposable elements. Although, based on BUSCO (Benchmarking Universal Single-Copy Orthologues) analysis, the genome assembly reported here contains more than 99% of protein-coding genes, several of those are expected to be represented in the assembly in a fragmented state. We also present here the annotation of several families of genes (tRNA genes, miRNA genes, the sialome, genes involved in chromatin condensation, sex determination genes, odorant binding proteins and odorant receptors). These analyses confirm that the assembly can be used for the study of the biology of this invasive vector of disease.


Assuntos
Aedes/genética , Genoma de Inseto , Análise de Sequência de DNA , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Itália , Masculino , Anotação de Sequência Molecular , Fases de Leitura Aberta
15.
BMC Genet ; 15 Suppl 2: S5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25472628

RESUMO

The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, is a fruit crop pest of very high economic relevance in different continents. The strategy to separate Ceratitis males from females (sexing) in mass rearing facilities is a useful step before the sterilization and release of male-only flies in Sterile Insect Technique control programs (SIT). The identification of genes having early embryonic male-specific expression, including Y-linked genes, such as the Maleness factor, could help to design novel and improved methods of sexing in combination with transgenesis, aiming to confer conditional female-specific lethality or female-to-male sexual reversal. We used a combination of Suppression Subtractive Hybrydization (SSH), Mirror Orientation Selection (MOS) anddifferential screening hybridization (DSH) techniques to approach the problem of isolating corresponding mRNAs expressed in XX/XY embryos versus XX-only embryos during a narrow developmental window (8-10 hours after egg laying, AEL ). Here we describe a novel strategy we have conceived to obtain relatively large amounts of XX-only embryos staged at 8-10 h AEL and so to extract few micrograms of polyA+ required to apply the complex technical procedure. The combination of these 3 techniques led to the identification of a Y-linked putative gene, CcGm2, sharing high sequence identity to a paralogous gene, CcGm1, localized either on an autosome or on the X chromosome. We propose that CcGm2 is a first interesting putative Y-linked gene which could play a role in sex determination. The function exterted by this gene should be investigated by novel genetic tools, such as CRISPR-CAS9, which will permit to target only the Y-linked paralogue, avoiding to interfere with the autosomal or X-linked paralogue function.


Assuntos
Ceratitis capitata/genética , Embrião não Mamífero , Regulação da Expressão Gênica , Genes de Insetos , Transcrição Gênica , Animais , Feminino , Biblioteca Gênica , Masculino , Hibridização de Ácido Nucleico , Fatores Sexuais
16.
BMC Genet ; 15 Suppl 2: S6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25472723

RESUMO

Alternative splicing is a widely used mechanism of gene regulation in sex determination pathways of Insects. In species from orders as distant as Diptera, Hymenoptera and Coleoptera, female differentiation relies on the activities of conserved splicing regulators, TRA and TRA-2, promoting female-specific expression of the global effector doublesex (dsx). Less understood is to what extent post-translational modifications of splicing regulators plays a role in this pathway. In Drosophila melanogaster phosphorylation of TRA, TRA-2 and the general RBP1 factor by the LAMMER kinase doa (darkener of apricot) is required for proper female sex determination. To explore whether this is a general feature of the pathway we examined sex-specific differences in phosphorylation levels of SR splicing factors in the dipteran species D. melanogaster, Ceratitis capitata (Medfly) and Musca domestica (Housefly). We found a distinct and reproducible pattern of male-specific phosphorylation on protein extracts enriched for SR proteins in C. capitata suggesting that differential phosphorylation may also contribute to the regulation of sex-specific splicing in the Medfly.


Assuntos
Ceratitis capitata/genética , Proteínas de Insetos/genética , Fosfoproteínas/genética , Processamento Alternativo , Animais , Ceratitis capitata/metabolismo , Drosophila melanogaster/genética , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo , Masculino , Fosfoproteínas/metabolismo , Fatores Sexuais , Transcriptoma
17.
PLoS One ; 9(12): e114191, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474564

RESUMO

The agricultural pest Ceratitis capitata, also known as the Mediterranean fruit fly or Medfly, belongs to the Tephritidae family, which includes a large number of other damaging pest species. The Medfly has been the first non-drosophilid fly species which has been genetically transformed paving the way for designing genetic-based pest control strategies. Furthermore, it is an experimentally tractable model, in which transient and transgene-mediated RNAi have been successfully used. We applied Illumina sequencing to total RNA preparations of 8-10 hours old embryos of C. capitata, This developmental window corresponds to the blastoderm cellularization stage. In summary, we assembled 42,614 transcripts which cluster in 26,319 unique transcripts of which 11,045 correspond to protein coding genes; we identified several hundreds of long ncRNAs; we found an enrichment of transcripts encoding RNA binding proteins among the highly expressed transcripts, such as CcTRA-2, known to be necessary to establish and, most likely, to maintain female sex of C. capitata. Our study is the first de novo assembly performed for Ceratitis capitata based on Illumina NGS technology during embryogenesis and it adds novel data to the previously published C. capitata EST databases. We expect that it will be useful for a variety of applications such as gene cloning and phylogenetic analyses, as well as to advance genetic research and biotechnological applications in the Medfly and other related Tephritidae.


Assuntos
Ceratitis capitata/embriologia , Ceratitis capitata/genética , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Animais , Ceratitis capitata/fisiologia , Cromossomos de Insetos/genética , Simulação por Computador , Bases de Dados Genéticas , Feminino , Genes de Insetos/genética , Masculino , Análise de Sequência , Caracteres Sexuais , Processos de Determinação Sexual/genética , Cromossomo Y/genética
18.
Int J Mol Sci ; 14(7): 14936-49, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23867609

RESUMO

Olfaction is crucial in many insects for critical behaviors, including those regulating survival and reproduction. Insect odorant-binding proteins (OBPs) function in the first step of the olfactory system and play an essential role in the perception of odorants, such as pheromones and host chemicals. The oriental fruit fly, Bactrocera dorsalis, is a destructive fruit-eating pest, due to its wide host range of up to 250 different types of fruits and vegetables, and this fly causes severe economic damage to the fruit and vegetable industry. However, OBP genes have not been largely identified in B. dorsalis. Based on our previously constructed B. dorsalis cDNA library, ten OBP genes were identified in B. dorsalis for the first time. A phylogenetic tree was generated to show the relationships among the 10 OBPs of B. dorsalis to OBP sequences of two other Dipteran species, including Drosophila melanogaster and the mosquito Anopheles gambiae. The expression profiles of the ten OBPs in different tissues (heads, thoraxes, abdomens, legs, wings, male antennae and female antenna) of the mated adults were analyzed by real-time PCR. The results showed that nine of them are highly expressed in the antenna of both sexes, except BdorOBP7. Four OBPs (BdorOBP1, BdorOBP4, BdorOBP8, and BdorOBP10) are also enriched in the abdomen, and BdorOBP7 is specifically expressed in leg, indicating that it may function in other biological processes. This work will provide insight into the roles of OBPs in chemoreception and help develop new pest-control strategies.


Assuntos
Receptores Odorantes/metabolismo , Tephritidae/metabolismo , Sequência de Aminoácidos , Animais , Anopheles/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Masculino , Dados de Sequência Molecular , Filogenia , Receptores Odorantes/classificação , Receptores Odorantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Transcriptoma
19.
PLoS One ; 8(2): e48554, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418412

RESUMO

In Drosophila melanogaster the doublesex (dsx) and fruitless (fru) regulatory genes act at the bottom of the somatic sex determination pathway. Both are regulated via alternative splicing by an upstream female-specific TRA/TRA-2 complex, recognizing a common cis element. dsx controls somatic sexual differentiation of non-neural as well as of neural tissues. fru, on the other hand, expresses male-specific functions only in neural system where it is required to built the neural circuits underlying proper courtship behaviour. In the mosquito Aedes aegypti sex determination is different from Drosophila. The key male determiner M, which is located on one of a pair of homomorphic sex chromosomes, controls sex-specific splicing of the mosquito dsx orthologue. In this study we report the genomic organization and expression of the fru homologue in Ae. aegypti (Aeafru). We found that it is sex-specifically spliced suggesting that it is also under the control of the sex determination pathway. Comparative analyses between the Aeafru and Anopheles gambiae fru (Angfru) genomic loci revealed partial conservation of exon organization and extensive divergence of intron lengths. We find that Aeadsx and Aeafru share novel cis splicing regulatory elements conserved in the alternatively spliced regions. We propose that in Aedes aegypti sex-specific splicing of dsx and fru is most likely under the control of splicing regulatory factors which are different from TRA and TRA-2 found in other dipteran insects and discuss the potential use of fru and dsx for developing new genetic strategies in vector control.


Assuntos
Aedes/genética , Evolução Biológica , Proteínas de Drosophila/genética , Proteínas do Tecido Nervoso/genética , Processos de Determinação Sexual/genética , Fatores de Transcrição/genética , Aedes/metabolismo , Processamento Alternativo , Animais , Proteínas de Drosophila/metabolismo , Feminino , Masculino , Proteínas do Tecido Nervoso/metabolismo , Splicing de RNA , Fatores de Transcrição/metabolismo
20.
Insect Biochem Mol Biol ; 42(1): 51-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22079281

RESUMO

In Tephritidae sex determination is established by orthologs to the Drosophila melanogaster transformer and transformer-2 genes, though the primary signals for sex determination differ. The presence of the Y chromosome in the tephritid species is critical for male differentiation, while the ratio of X chromosomes to autosome ploidy is critical in drosophilids. Here the isolation, expression and function of tra and tra-2 orthologs are described for the agriculturally important tephritid, Anastrepha suspensa, and their possible use in genetically modified organisms for biologically-based pest management. The Astra and Astra-2 genes are highly conserved in structure, regulation and function with respect to those known from other tephritid species. Sex-specific transcripts for Astra were detected, one in females and three in males, whereas Astra-2 had a single common transcript found in both sexes. To test the function of these genes, Astra and Astra-2 dsRNA was injected into A. suspensa embryos from a transgenic strain having a Y-linked DsRed marker integration, allowing XY males to be distinguished from XX phenotypic males. Nearly all XX embryos developed into fully masculinized phenotypic male adults with no apparent female morphology. Upon dissection abnormal hypertrophic gonads were revealed in XX pseudomales but not in the XY males. Our findings suggest that Astra and Astra-2 are both necessary for female development, and that the potential exists for producing a male-only population when either gene alone, or both genes simultaneously, are knocked-down.


Assuntos
Proteínas de Insetos/genética , Processos de Determinação Sexual , Tephritidae/fisiologia , Animais , Proteínas de Drosophila , Feminino , Fertilidade , Masculino , Proteínas Nucleares , Interferência de RNA , Ribonucleoproteínas , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA