Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 91(1): e0033822, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36537792

RESUMO

Kingella kingae is an emerging pathogen that has recently been identified as a leading cause of osteoarticular infections in young children. Colonization with K. kingae is common, with approximately 10% of young children carrying this organism in the oropharynx at any given time. Adherence to epithelial cells represents the first step in K. kingae colonization of the oropharynx, a prerequisite for invasive disease. Type IV pili and the pilus-associated PilC1 and PilC2 proteins have been shown to mediate K. kingae adherence to epithelial cells, but the molecular mechanism of this adhesion has remained unknown. Metal ion-dependent adhesion site (MIDAS) motifs are commonly found in integrins, where they function to promote an adhesive interaction with a ligand. In this study, we identified a potential MIDAS motif in K. kingae PilC1 which we hypothesized was directly involved in mediating type IV pilus adhesive interactions. We found that the K. kingae PilC1 MIDAS motif was required for bacterial adherence to epithelial cell monolayers and extracellular matrix proteins and for twitching motility. Our results demonstrate that K. kingae has co-opted a eukaryotic adhesive motif for promoting adherence to host structures and facilitating colonization.


Assuntos
Kingella kingae , Infecções por Neisseriaceae , Criança , Humanos , Pré-Escolar , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Kingella kingae/genética , Kingella kingae/metabolismo , Aderência Bacteriana , Fímbrias Bacterianas/metabolismo , Células Epiteliais/microbiologia , Metais/metabolismo , Infecções por Neisseriaceae/microbiologia
2.
PLoS Pathog ; 18(3): e1010440, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35353876

RESUMO

The gram-negative bacterium Kingella kingae is a leading cause of osteoarticular infections in young children and initiates infection by colonizing the oropharynx. Adherence to respiratory epithelial cells represents an initial step in the process of K. kingae colonization and is mediated in part by type IV pili. In previous work, we observed that elimination of the K. kingae PilC1 and PilC2 pilus-associated proteins resulted in non-piliated organisms that were non-adherent, suggesting that PilC1 and PilC2 have a role in pilus biogenesis. To further define the functions of PilC1 and PilC2, in this study we eliminated the PilT retraction ATPase in the ΔpilC1ΔpilC2 mutant, thereby blocking pilus retraction and restoring piliation. The resulting strain was non-adherent in assays with cultured epithelial cells, supporting the possibility that PilC1 and PilC2 have adhesive activity. Consistent with this conclusion, purified PilC1 and PilC2 were capable of saturable binding to epithelial cells. Additional analysis revealed that PilC1 but not PilC2 also mediated adherence to selected extracellular matrix proteins, underscoring the differential binding specificity of these adhesins. Examination of deletion constructs and purified PilC1 and PilC2 fragments localized adhesive activity to the N-terminal region of both PilC1 and PilC2. The deletion constructs also localized the twitching motility property to the N-terminal region of these proteins. In contrast, the deletion constructs established that the pilus biogenesis function of PilC1 and PilC2 resides in the C-terminal region of these proteins. Taken together, these results provide definitive evidence that PilC1 and PilC2 are adhesins and localize adhesive activity and twitching motility to the N-terminal domain and biogenesis to the C-terminal domain.


Assuntos
Kingella kingae , Adesinas Bacterianas/genética , Adesivos , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Criança , Pré-Escolar , DNA , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Humanos , Kingella kingae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA