Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(26): eadl0030, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924398

RESUMO

How can short-lived molecules selectively maintain the potentiation of activated synapses to sustain long-term memory? Here, we find kidney and brain expressed adaptor protein (KIBRA), a postsynaptic scaffolding protein genetically linked to human memory performance, complexes with protein kinase Mzeta (PKMζ), anchoring the kinase's potentiating action to maintain late-phase long-term potentiation (late-LTP) at activated synapses. Two structurally distinct antagonists of KIBRA-PKMζ dimerization disrupt established late-LTP and long-term spatial memory, yet neither measurably affects basal synaptic transmission. Neither antagonist affects PKMζ-independent LTP or memory that are maintained by compensating PKCs in ζ-knockout mice; thus, both agents require PKMζ for their effect. KIBRA-PKMζ complexes maintain 1-month-old memory despite PKMζ turnover. Therefore, it is not PKMζ alone, nor KIBRA alone, but the continual interaction between the two that maintains late-LTP and long-term memory.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Potenciação de Longa Duração , Camundongos Knockout , Proteína Quinase C , Animais , Proteína Quinase C/metabolismo , Proteína Quinase C/genética , Camundongos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Memória/fisiologia , Memória de Longo Prazo/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia , Ligação Proteica , Fosfoproteínas
2.
J Clin Invest ; 134(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299587

RESUMO

Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer's disease (AD) and related tauopathies. Here, we found that reduced levels of the memory-associated protein KIdney/BRAin (KIBRA) in the brain and increased KIBRA protein levels in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. We next defined a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIBRA protein (CT-KIBRA). We showed that CT-KIBRA restored plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we found that CT-KIBRA stabilized the protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. Thus, our results distinguished KIBRA both as a biomarker of synapse dysfunction and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.


Assuntos
Doença de Alzheimer , Resiliência Psicológica , Tauopatias , Camundongos , Animais , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/genética , Tauopatias/metabolismo , Tauopatias/patologia , Encéfalo/metabolismo , Doença de Alzheimer/patologia , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Plasticidade Neuronal , Camundongos Transgênicos , Rim/metabolismo , Modelos Animais de Doenças
3.
bioRxiv ; 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37398236

RESUMO

Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer's disease (AD) and related tauopathies. Here, we define a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIdney/BRAin (KIBRA) protein (CT-KIBRA). We show that CT-KIBRA restores plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we find that CT-KIBRA binds to and stabilizes protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. In humans we find that reduced KIBRA in brain and increased KIBRA in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. Thus, our results distinguish KIBRA both as a novel biomarker of synapse dysfunction in AD and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.

4.
Brain Res Bull ; 194: 124-127, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739095

RESUMO

Karim Nader is rightly celebrated for his seminal studies on memory reconsolidation. This commentary celebrates another related contribution - his work on memory maintenance by the autonomously active PKC isoform, PKMζ. There are two methods for "erasing" previously established long-term memory maintenance: 1) inhibiting PKMζ, and 2) blocking reconsolidation. Prior to Nader's research on PKMζ, these two forms of memory erasure were thought to be fundamentally different. Inhibiting PKMζ in a brain region disrupts memory held in storage. But if the inhibitor is injected into the same region immediately after memory retrieval, the drug has no effect. Conversely, inhibiting protein synthesis immediately after memory retrieval blocks reconsolidation. But protein synthesis inhibitors have no effect on memory held in storage without retrieval. The work of Paolo Virginia Migues, Nader, and colleagues, however, revealed an unexpected link between the mechanisms of memory maintenance by PKMζ and the kinase's regulation of postsynaptic AMPAR trafficking that potentiates synaptic transmission and expresses memory during retrieval. This insight led Matteo Bernabo, Nader, and colleagues to observe that memory retrieval first rapidly degrades PKMζ, and then induces the resynthesis of the kinase to restore maintenance of the retrieved memory. This finding explains why a PKMζ inhibitor such as ZIP, if injected in a brain region storing a memory, does not erase the memory immediately after retrieval - the kinase maintaining the retrieved memory has been degraded but not yet resynthesized. Moreover, Bernabo et al. showed that suppressing the resynthesis of PKMζ after its degradation prevents memory reconsolidation, reproducing the effect of general protein synthesis inhibition. Thus, Nader and colleagues demonstrated PKMζ inhibition and reconsolidation blockade disrupt in different ways the same molecular mechanism of memory maintenance - PKMζ inhibition erases all memories maintained in storage by the kinase; reconsolidation blockade disrupts specific recalled memories maintained by PKMζ by preventing resynthesis of the kinase after its degradation.


Assuntos
Memória , Proteína Quinase C , Proteína Quinase C/metabolismo , Memória/fisiologia , Memória de Longo Prazo , Transmissão Sináptica , Potenciação de Longa Duração/fisiologia
5.
eNeuro ; 9(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443991

RESUMO

Activity-dependent modifications of synaptic efficacies are a cellular substrate of learning and memory. Experimental evidence shows that these modifications are synapse specific and that the long-lasting effects are associated with the sustained increase in concentration of specific proteins like PKMζ However, such proteins are likely to diffuse away from their initial synaptic location and spread out to neighboring synapses, potentially compromising synapse specificity. In this article, we address the issue of synapse specificity during memory maintenance. Assuming that the long-term maintenance of synaptic plasticity is accomplished by a molecular switch, we carry out analytical calculations and perform simulations using the reaction-diffusion package in NEURON to determine the limits of synapse specificity during maintenance. Moreover, we explore the effects of the diffusion and degradation rates of proteins and of the geometrical characteristics of dendritic spines on synapse specificity. We conclude that the necessary conditions for synaptic specificity during maintenance require that molecular switches reside in dendritic spines. The requirement for synaptic specificity when the molecular switch resides in spines still imposes strong limits on the diffusion and turnover of rates of maintenance molecules, as well as on the morphologic properties of synaptic spines. These constraints are quite general and apply to most existing models suggested for maintenance. The parameter values can be experimentally evaluated, and if they do not fit the appropriate predicted range, the validity of this class of maintenance models would be challenged.


Assuntos
Potenciação de Longa Duração , Plasticidade Neuronal , Espinhas Dendríticas/metabolismo , Difusão , Hipocampo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/metabolismo
6.
Learn Mem ; 28(9): 341-347, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34400535

RESUMO

Protein kinase Mζ (PKMζ) maintains long-term potentiation (LTP) and long-term memory through persistent increases in kinase expression. Early-life adversity is a precursor to adult mood and anxiety disorders, in part, through persistent disruption of emotional memory throughout life. Here we subjected 10- to 16-wk-old male bonnet macaques to adversity by a maternal variable-foraging demand paradigm. We then examined PKMζ expression in their ventral hippocampi as 7- to 12-yr-old adults. Quantitative immunohistochemistry reveals decreased PKMζ in dentate gyrus, CA1, and subiculum of subjects who had experienced early-life adversity due to the unpredictability of maternal care. Adult animals with persistent decrements of PKMζ in ventral hippocampus express timid rather than confrontational responses to a human intruder. Persistent down-regulation of PKMζ in the ventral hippocampus might reduce the capacity for emotional memory maintenance and contribute to the long-lasting emotional effects of early-life adversity.


Assuntos
Hipocampo , Proteína Quinase C , Estresse Psicológico , Animais , Masculino , Hipocampo/metabolismo , Potenciação de Longa Duração , Proteína Quinase C/metabolismo , Macaca radiata
7.
Eur J Neurosci ; 54(8): 6795-6814, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33540466

RESUMO

PKMζ is an autonomously active PKC isoform crucial for the maintenance of synaptic long-term potentiation (LTP) and long-term memory. Unlike other kinases that are transiently stimulated by second messengers, PKMζ is persistently activated through sustained increases in protein expression of the kinase. Therefore, visualizing increases in PKMζ expression during long-term memory storage might reveal the sites of its persistent action and thus the location of memory-associated LTP maintenance in the brain. Using quantitative immunohistochemistry validated by the lack of staining in PKMζ-null mice, we examined the amount and distribution of PKMζ in subregions of the hippocampal formation of wild-type mice during LTP maintenance and spatial long-term memory storage. During LTP maintenance in hippocampal slices, PKMζ increases in the pyramidal cell body and stimulated dendritic layers of CA1 for at least 2 hr. During spatial memory storage, PKMζ increases in CA1 pyramidal cells for at least 1 month, paralleling the persistence of the memory. During the initial expression of the memory, we tagged principal cells with immediate-early gene Arc promoter-driven transcription of fluorescent proteins. The subset of memory-tagged CA1 cells selectively increases expression of PKMζ during memory storage, and the increase persists in dendritic compartments within stratum radiatum for 1 month, indicating long-term storage of information in the CA3-to-CA1 pathway. We conclude that persistent increases in PKMζ trace the molecular mechanism of LTP maintenance and thus the sites of information storage within brain circuitry during long-term memory.


Assuntos
Potenciação de Longa Duração , Proteína Quinase C , Animais , Hipocampo/metabolismo , Memória de Longo Prazo , Camundongos , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Memória Espacial
8.
Bio Protoc ; 9(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31803793

RESUMO

The elucidation of the molecular mechanisms of long-term synaptic plasticity has been hindered by both the compensation that can occur after chronic loss of the core plasticity molecules and by ex vivo conditions that may not reproduce in vivo plasticity. Here we describe a novel method to rapidly suppress gene expression by antisense oligodeoxynucleotides (ODNs) applied to rodent brain slices in an "Oslo-type" interface chamber. The method has three advantageous features: 1) rapid blockade of new synthesis of the targeted proteins that avoids genetic compensation, 2) efficient oxygenation of the brain slice, which is critical for reproducing in vivo conditions of long-term synaptic plasticity, and 3) a recirculation system that uses only small volumes of bath solution (< 5 ml), reducing the amount of reagents required for long-term experiments lasting many hours. The method employs a custom-made recirculation system involving piezoelectric micropumps and was first used for the acute translational blockade of protein kinase Mζ (PKMζ) synthesis during long-term potentiation (LTP) by Tsokas et al., 2016. In that study, applying antisense-ODN rapidly prevents the synthesis of PKMζ and blocks late-LTP without inducing the compensation by other protein kinase C (PKC) isoforms that occurs in PKCζ/PKMζ knockout mice. In addition, we show that in a low-oxygenation submersion-type chamber, applications of the atypical PKC inhibitor, zeta inhibitory peptide (ZIP), can result in unstable baseline synaptic transmission, but in the high-oxygenation, "Oslo-type" interface electrophysiology chamber, the drug reverses late-LTP without affecting baseline synaptic transmission. This comparison reveals that the interface chamber, but not the submersion chamber, reproduces the effects of ZIP in vivo. Therefore, the protocol combines the ability to acutely block new synthesis of specific proteins for the study of long-term synaptic plasticity, while maintaining properties of synaptic transmission that reproduce in vivo conditions relevant for long-term memory.

10.
Mol Brain ; 11(1): 77, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30593289

RESUMO

In "Criteria for identifying the molecular basis of the engram (CaMKII, PKMζ)," Lisman proposes that elucidating the mechanism of LTP maintenance is key to understanding memory storage. He suggests three criteria for a maintenance mechanism to evaluate data on CaMKII and PKMζ as memory storage molecules: necessity, occlusion, and erasure. Here we show that when the criteria are tested, the results reveal important differences between the molecules. Inhibiting PKMζ reverses established, protein synthesis-dependent late-LTP, without affecting early-LTP or baseline synaptic transmission. In contrast, blocking CaMKII has two effects: 1) inhibiting CaMKII activity blocks LTP induction but not maintenance, and 2) disrupting CaMKII interactions with NMDARs in the postsynaptic density (PSD) depresses both early-LTP and basal synaptic transmission equivalently. To identify a maintenance mechanism, we propose a fourth criterion - persistence. PKMζ increases for hours during LTP maintenance in hippocampal slices, and for over a month in specific brain regions during long-term memory storage in conditioned animals. In contrast, increased CaMKII activity lasts only minutes following LTP induction, and CaMKII translocation to the PSD in late-LTP or memory has not been reported. Lastly, do the PKMζ and CaMKII models integrate the many other signaling molecules important for LTP? Activity-dependent PKMζ synthesis is regulated by many of the signaling molecules that induce LTP, including CaMKII, providing a plausible mechanism for new gene expression in the persistent phosphorylation by PKMζ maintaining late-LTP and memory. In contrast, CaMKII autophosphorylation and translocation do not appear to require new protein synthesis. Therefore, the cumulative evidence supports a core role for PKMζ in late-LTP and long-term memory maintenance, and separate roles for CaMKII in LTP induction and for the maintenance of postsynaptic structure and synaptic transmission in a mechanism distinct from late-LTP.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Proteína Quinase C/metabolismo , Animais , Humanos , Mutação/genética , Transmissão Sináptica/fisiologia
11.
PLoS One ; 13(10): e0203374, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30281601

RESUMO

The transition from short-term to long-term forms of synaptic plasticity requires protein synthesis and new gene expression. Most efforts to understand experience-induced changes in neuronal gene expression have focused on the transcription products of RNA polymerase II-primarily mRNAs and the proteins they encode. We recently showed that nucleolar integrity and activity-dependent ribosomal RNA (rRNA) synthesis are essential for the maintenance of hippocampal long-term potentiation (LTP). Consequently, the synaptic plasticity and memory hypothesis predicts that nucleolar integrity and activity dependent rRNA synthesis would be required for Long-term memory (LTM). We tested this prediction using the hippocampus-dependent, Active Place Avoidance (APA) spatial memory task and found that training induces de novo rRNA synthesis in mouse dorsal hippocampus. This learning-induced increase in nucleolar activity and rRNA synthesis persists at least 24 h after training. In addition, intra-hippocampal injection of the Pol I specific inhibitor, CX-5461 prior to training, revealed that de novo rRNA synthesis is required for 24 h memory, but not for learning. Using qPCR to assess activity-dependent changes in gene expression, we found that of seven known rRNA expression variants (v-rRNAs), only one, v-rRNA IV, is significantly upregulated right after training. These data indicate that learning induced v-rRNAs are crucial for LTM, and constitute the first evidence that differential rRNA gene expression plays a role in memory.


Assuntos
Regulação da Expressão Gênica/genética , Aprendizagem/fisiologia , Memória/fisiologia , RNA Ribossômico/genética , Animais , Hipocampo/metabolismo , Consolidação da Memória/fisiologia , Testes de Memória e Aprendizagem , Memória de Longo Prazo , Camundongos , Plasticidade Neuronal/genética , Sinapses/genética , Sinapses/fisiologia
12.
iScience ; 5: 90-98, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30240648

RESUMO

Procedural motor learning and memory are accompanied by changes in synaptic plasticity, neural dynamics, and synaptogenesis. Missing is information on the spatiotemporal dynamics of the molecular machinery maintaining these changes. Here we examine whether persistent increases in PKMζ, an atypical protein kinase C (PKC) isoform, store long-term memory for a reaching task in rat sensorimotor cortex that could reveal the sites of procedural memory storage. Specifically, perturbing PKMζ synthesis (via antisense oligodeoxynucleotides) and blocking atypical PKC activity (via zeta inhibitory peptide [ZIP]) in S1/M1 disrupts and erases long-term motor memory maintenance, indicating atypical PKCs and specifically PKMζ store consolidated long-term procedural memories. Immunostaining reveals that PKMζ increases in S1/M1 layers II/III and V as performance improved to an asymptote. After storage for 1 month without reinforcement, the increase in M1 layer V persists without decrement. Thus, the persistent increases in PKMζ that store long-term procedural memory are localized to the descending output layer of the primary motor cortex.

13.
Neuroscience ; 392: 129-140, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30243909

RESUMO

Chronic cocaine exposure produces enduring neuroadaptations in the brain's reward system. Persistence of early cocaine-evoked neuroadaptations in the ventral tegmental area (VTA) is necessary for later synaptic alterations in the nucleus accumbens (NAc), suggesting a temporal sequence of neuroplastic changes between these two areas. However, the molecular nature of the signal that mediates this sequential event is unknown. Here we used the behavioral sensitization model and the aPKC inhibitor of late-phase LTP maintenance, ZIP, to investigate if a persistent increase in AMPA/NMDA ratio plays a role in the molecular mechanism that allows VTA neuroadaptations to induce changes in the NAc. Results showed that intra-VTA ZIP microinfusion successfully blocked cocaine-evoked synaptic enhancement in the VTA and the expected AMPA/NMDA ratio decrease in the NAc following cocaine sensitization. ZIP microinfusions also blocked the expected AMPA/NMDA ratio increase in the NAc following cocaine withdrawal. These results suggest that a persistent increase in AMPA/NMDA ratio, mediated by aPKCs, could be the molecular signal that enables the VTA to elicit synaptic alterations in the NAc following cocaine administration.


Assuntos
Cocaína/administração & dosagem , Potenciação de Longa Duração/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Proteína Quinase C/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Área Tegmentar Ventral/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Masculino , Núcleo Accumbens/efeitos dos fármacos , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos
14.
Mol Brain ; 10(1): 56, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29202853

RESUMO

Protein kinase M zeta (PKMζ), a constitutively active, atypical protein kinase C isoform, maintains a high level of expression in the brain after the induction of learning and long-term potentiation (LTP). Further, its overexpression enhances long-term memory and LTP. Thus, multiple lines of evidence suggest a significant role for persistently elevated PKMζ levels in long-term memory. The molecular mechanisms of how synaptic properties are regulated by the increase in PKMζ, however, are still largely unknown. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (AMPAR) mediates most of the fast glutamatergic synaptic transmission in the brain and is known to be critical for the expression of synaptic plasticity and memory. Importance of AMPAR trafficking has been implicated in PKMζ-mediated cellular processes, but the detailed mechanisms, particularly in terms of regulation of AMPAR lateral movement, are not well understood. In the current study, using a single-molecule live imaging technique, we report that the overexpression of PKMζ in hippocampal neurons immobilized GluA2-containing AMPARs, highlighting a potential novel mechanism by which PKMζ may regulate memory and synaptic plasticity.


Assuntos
Proteína Quinase C/metabolismo , Receptores de AMPA/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/citologia , Neurônios/metabolismo , Ratos , Sinapses/metabolismo
15.
Sci Signal ; 10(505)2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138296

RESUMO

Elucidating the molecular mechanisms that maintain long-term memory is a fundamental goal of neuroscience. Accumulating evidence suggests that persistent signaling by the atypical protein kinase C (PKC) isoform protein kinase Mζ (PKMζ) might maintain synaptic long-term potentiation (LTP) and long-term memory. However, the role of PKMζ has been challenged by genetic data from PKMζ-knockout mice showing intact LTP and long-term memory. Moreover, the PKMζ inhibitor peptide ζ inhibitory peptide (ZIP) reverses LTP and erases memory in both wild-type and knockout mice. Data from four papers using additional isoform-specific genetic approaches have helped to reconcile these conflicting findings. First, a PKMζ-antisense approach showed that LTP and long-term memory in PKMζ-knockout mice are mediated through a compensatory mechanism that depends on another ZIP-sensitive atypical isoform, PKCι/λ. Second, short hairpin RNAs decreasing the amounts of individual atypical isoforms without inducing compensation disrupted memory in different temporal phases. PKCι/λ knockdown disrupted short-term memory, whereas PKMζ knockdown specifically erased long-term memory. Third, conditional PKCι/λ knockout induced compensation by rapidly activating PKMζ to preserve short-term memory. Fourth, a dominant-negative approach in the model system Aplysia revealed that multiple PKCs form PKMs to sustain different types of long-term synaptic facilitation, with atypical PKM maintaining synaptic plasticity similar to LTP. Thus, under physiological conditions, PKMζ is the principal PKC isoform that maintains LTP and long-term memory. PKCι/λ can compensate for PKMζ, and because other isoforms could also maintain synaptic facilitation, there may be a hierarchy of compensatory mechanisms maintaining memory if PKMζ malfunctions.


Assuntos
Memória/fisiologia , Proteína Quinase C/genética , Animais , Humanos , Potenciação de Longa Duração , Proteína Quinase C/fisiologia , Transdução de Sinais
16.
Bio Protoc ; 7(8)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29170753

RESUMO

This protocol was originally designed to examine long-term spatial memory in PKMζ knockout (i.e., PKMζ-null) mice (Tsokas et al., 2016). Our main goal was to test whether the ability of these animals to maintain previously acquired spatial information was sensitive to the type and complexity of the spatial information that needs to be remembered. Accordingly, we modified and combined into a single protocol, three novelty-preference tests, specifically the object-in-context, object-in-place and object-in-location tests, adapted from previous studies in rodents (Mumby et al., 2002; Langston and Wood, 2010; Barker and Warburton, 2011). During the training (learning) phase of the procedure, mice are repeatedly exposed to three different environments in which they learn the spatial arrangement of an environment-specific set of non-identical objects. After this learning phase is completed, each mouse receives three different memory tests configured as environment mismatches, in which the previously learned objects-in-space configurations have been modified from the original training situation. The mismatch tests differ in their cognitive demands due to the type of spatial association that is manipulated, specifically evaluating memory for object-context and object-place associations. During each memory test, the time differential spent exploring the novel (misplaced) and familiar objects is computed as an index of novelty discrimination. This index is the behavioral measure of memory recall of the previously acquired spatial associations.

17.
Neurobiol Learn Mem ; 138: 135-144, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27417578

RESUMO

PKMζ is an autonomously active PKC isoform that is thought to maintain both LTP and long-term memory. Whereas persistent increases in PKMζ protein sustain the kinase's action in LTP, the molecular mechanism for the persistent action of PKMζ during long-term memory has not been characterized. PKMζ inhibitors disrupt spatial memory when introduced into the dorsal hippocampus from 1day to 1month after training. Therefore, if the mechanisms of PKMζ's persistent action in LTP maintenance and long-term memory were similar, persistent increases in PKMζ would last for the duration of the memory, far longer than most other learning-induced gene products. Here we find that spatial conditioning by aversive active place avoidance or appetitive radial arm maze induces PKMζ increases in dorsal hippocampus that persist from 1day to 1month, coinciding with the strength and duration of memory retention. Suppressing the increase by intrahippocampal injections of PKMζ-antisense oligodeoxynucleotides prevents the formation of long-term memory. Thus, similar to LTP maintenance, the persistent increase in the amount of autonomously active PKMζ sustains the kinase's action during long-term and remote spatial memory maintenance.


Assuntos
Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Memória de Longo Prazo/fisiologia , Proteína Quinase C/metabolismo , Memória Espacial/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Condicionamento Operante/fisiologia , Potenciais Pós-Sinápticos Excitadores , Masculino , Ratos , Ratos Long-Evans , Retenção Psicológica/fisiologia
18.
Neurobiol Learn Mem ; 135: 50-56, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27321162

RESUMO

Recently, protein kinase M ζ (PKMζ) has emerged as an important player for maintaining memory. It has been reported that PKMζ regulates the trafficking of GluA2 in postsynaptic membranes to maintain memory. However, there has been no study on PKMζ outside the synaptic region regarding memory maintenance. Here, we found that PKMζ is transported to the nucleus in a neural activity-dependent manner. Moreover, we found that PKMζ phosphorylates CREB-binding protein (CBP) at serine residues and that PKMζ inhibition reduces the acetylation of histone H2B and H3. Finally, we showed that the amnesic effect of PKMζ inhibition can be rescued by enhancing histone acetylation level. These results suggest the possibility that nuclear PKMζ has a crucial role in memory maintenance.


Assuntos
Amnésia/metabolismo , Tonsila do Cerebelo/metabolismo , Proteína de Ligação a CREB/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica/fisiologia , Memória/fisiologia , Proteína Quinase C/metabolismo , Amnésia/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Animais , Comportamento Animal/fisiologia , Células Cultivadas , Embrião de Mamíferos , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios , Proteína Quinase C/antagonistas & inibidores
19.
Elife ; 52016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27187150

RESUMO

PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração , Memória de Longo Prazo , Proteína Quinase C/metabolismo , Animais , Camundongos , Camundongos Knockout , Farmacogenética , Memória Espacial
20.
Learn Mem ; 22(7): 344-53, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26077687

RESUMO

Memories that last a lifetime are thought to be stored, at least in part, as persistent enhancement of the strength of particular synapses. The synaptic mechanism of these persistent changes, late long-term potentiation (L-LTP), depends on the state and number of specific synaptic proteins. Synaptic proteins, however, have limited dwell times due to molecular turnover and diffusion, leading to a fundamental question: how can this transient molecular machinery store memories lasting a lifetime? Because the persistent changes in efficacy are synapse-specific, the underlying molecular mechanisms must to a degree reside locally in synapses. Extensive experimental evidence points to atypical protein kinase C (aPKC) isoforms as key components involved in memory maintenance. Furthermore, it is evident that establishing long-term memory requires new protein synthesis. However, a comprehensive model has not been developed describing how these components work to preserve synaptic efficacies over time. We propose a molecular model that can account for key empirical properties of L-LTP, including its protein synthesis dependence, dependence on aPKCs, and synapse-specificity. Simulations and empirical data suggest that either of the two aPKC subtypes in hippocampal neurons, PKMζ and PKCι/λ, can maintain L-LTP, making the system more robust. Given genetic compensation at the level of synthesis of these PKC subtypes as in knockout mice, this system is able to maintain L-LTP and memory when one of the pathways is eliminated.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Modelos Moleculares , Modelos Neurológicos , Proteína Quinase C/metabolismo , Animais , Simulação por Computador , Retroalimentação Fisiológica/fisiologia , Isoenzimas , Cinética , Neurônios/fisiologia , Fosforilação , Biossíntese de Proteínas , Proteína Quinase C/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA