Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Biochem ; 666: 115047, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682579

RESUMO

Due to the emergence of multidrug resistant pathogens, it is imperative to identify new targets for antibiotic drug discovery. The S-adenosylhomocysteine (SAH) nucleosidase enzyme is a promising target for antimicrobial drug development due to its critical functions in multiple bacterial processes including recycling of toxic byproducts of S-adenosylmethionine (SAM)-mediated reactions and producing the precursor of the universal quorum sensing signal, autoinducer-2 (AI-2). Riboswitches are structured RNA elements typically used by bacteria to precisely monitor and respond to changes in essential bacterial processes, including metabolism. Natural riboswitches fused to a reporter gene can be exploited to detect changes in metabolism or in physiological signaling. We performed a high-throughput screen (HTS) using an SAH-riboswitch controlled ß-galactosidase reporter gene in Escherichia coli to discover small molecules that inhibit SAH recycling. We demonstrate that the assay strategy using SAH riboswitches to detect the effects of SAH nucleosidase inhibitors can quickly identify compounds that penetrate the barriers of Gram-negative bacterial cells and perturb pathways involving SAH.


Assuntos
Riboswitch , S-Adenosilmetionina/metabolismo , RNA/genética , Bactérias/genética , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo
2.
Sci Rep ; 12(1): 19145, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352003

RESUMO

Lithium is rare in Earth's crust compared to the biologically relevant alkali metal cations sodium and potassium but can accumulate to toxic levels in some environments. We report the experimental validation of two distinct bacterial riboswitch classes that selectively activate gene expression in response to elevated Li+ concentrations. These RNAs commonly regulate the expression of nhaA genes coding for ion transporters that weakly discriminate between Na+ and Li+. Our findings demonstrated that the primary function of Li+ riboswitches and associated NhaA transporters is to prevent Li+ toxicity, particularly when bacteria are living at high pH. Additional riboswitch-associated genes revealed how some cells defend against the deleterious effects of Li+ in the biosphere, which might become more problematic as its industrial applications increase.


Assuntos
Riboswitch , Riboswitch/genética , Lítio/farmacologia , Lítio/metabolismo , Genes Bacterianos , Bactérias/genética , Bactérias/metabolismo , Sódio/metabolismo , Cátions/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
3.
RNA Biol ; 19(1): 1059-1076, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36093908

RESUMO

Riboswitch architectures that involve the binding of a single ligand to a single RNA aptamer domain result in ordinary dose-response curves that require approximately a 100-fold change in ligand concentration to cover nearly the full dynamic range for gene regulation. However, by using multiple riboswitches or aptamer domains in tandem, these ligand-sensing structures can produce additional, complex gene control outcomes. In the current study, we have computationally searched for tandem riboswitch architectures in bacteria to provide a more complete understanding of the diverse biological and biochemical functions of gene control elements that are made exclusively of RNA. Numerous different arrangements of tandem homologous riboswitch architectures are exploited by bacteria to create more 'digital' gene control devices, which operate over a narrower ligand concentration range. Also, two heterologous riboswitch aptamers are sometimes employed to create two-input Boolean logic gates with various types of genetic outputs. These findings illustrate the sophisticated genetic decisions that can be made by using molecular sensors and switches based only on RNA.


Assuntos
Aptâmeros de Nucleotídeos , Riboswitch , Aptâmeros de Nucleotídeos/química , Ligantes , RNA , Riboswitch/genética
4.
Nat Chem Biol ; 18(8): 878-885, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35879547

RESUMO

Organisms presumably have mechanisms to monitor and physiologically adapt to changes in cellular Na+ concentrations. Only a single bacterial protein has previously been demonstrated to selectively sense Na+ and regulate gene expression. Here we report a riboswitch class, previously called the 'DUF1646 motif', whose members selectively sense Na+ and regulate the expression of genes relevant to sodium biology. Many proteins encoded by Na+-riboswitch-regulated genes are annotated as metal ion transporters, whereas others are involved in mitigating osmotic stress or harnessing Na+ gradients for ATP production. Na+ riboswitches exhibit dissociation constants in the low mM range, and strongly reject all other alkali and alkaline earth ions. Likewise, only Na+ triggers riboswitch-mediated transcription and gene expression changes. These findings reveal that some bacteria use Na+ riboswitches to monitor, adjust and exploit Na+ concentrations and gradients, and in some instances collaborate with c-di-AMP riboswitches to coordinate gene expression during osmotic stress.


Assuntos
Fenômenos Fisiológicos , Riboswitch , Bactérias/genética , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Íons/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética , Sódio/metabolismo
5.
Biochemistry ; 58(5): 401-410, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30081631

RESUMO

The ykkC RNA motif was a long-standing orphan riboswitch candidate that has recently been proposed to encompass at least five distinct bacterial riboswitch classes. Most ykkC RNAs belong to the subtype 1 group, which are guanidine-I riboswitches that regulate the expression of guanidine-specific carboxylase and transporter proteins. The remaining ykkC RNAs have been organized into at least four major categories called subtypes 2a-2d. Subtype 2a RNAs are riboswitches that sense the bacterial alarmone ppGpp and typically regulate amino acid biosynthesis genes. Subtype 2b riboswitches sense the purine biosynthetic intermediate PRPP and frequently partner with guanine riboswitches to regulate purine biosynthesis genes. In this study, we examined ykkC subtype 2c RNAs, which are found upstream of genes encoding hydrolase enzymes that cleave the phosphoanhydride linkages of nucleotide substrates. Subtype 2c representatives mostly recognize adenosine and cytidine 5'-diphosphate molecules in either their ribose or deoxyribose forms (ADP, dADP, CDP, and dCDP). Other nucleotide-containing compounds, especially nucleoside 5'-triphosphates, are strongly rejected by some members of this putative riboswitch class. High ligand concentrations in vivo are predicted to turn on expression of hydrolase enzymes, which presumably function to balance cellular nucleotide pools. These results further showcase the striking functional diversity derived from the structural scaffold shared among all ykkC motif RNAs, which has been adapted to sense at least five different types of natural ligands. Moreover, riboswitches for nucleoside diphosphates provide additional examples of the numerous partnerships observed between natural RNA aptamers and nucleotide-derived ligands, including metabolites, coenzymes, and signaling molecules.


Assuntos
Proteínas de Bactérias/metabolismo , Hidrolases/metabolismo , Fosforribosil Pirofosfato/metabolismo , RNA Bacteriano/metabolismo , Riboswitch/genética , Proteínas de Bactérias/genética , Sequência de Bases , Enterobacteriaceae/metabolismo , Hidrolases/genética , Leuconostoc mesenteroides/metabolismo , Conformação de Ácido Nucleico , RNA Bacteriano/genética
6.
Nature ; 557(7706): 503-509, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29769716

RESUMO

One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because they are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.


Assuntos
Bactérias/genética , Genes Bacterianos/genética , Anotação de Sequência Molecular , Mutação , Fenótipo , Incerteza , Bactérias/citologia , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Sequência Conservada , Reparo do DNA/genética , Aptidão Genética , Genoma Bacteriano/genética , Proteínas Mutantes/classificação , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia
7.
Genetics ; 206(1): 251-263, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28292919

RESUMO

Cell-nonautonomous effects of signaling in the nervous system of animals can influence diverse aspects of organismal physiology. We previously showed that phosphorylation of Ser49 of the α-subunit of eukaryotic translation initiation factor 2 (eIF2α) in two chemosensory neurons by PEK-1/PERK promotes entry of Caenorhabditis elegans into dauer diapause. Here, we identified and characterized the molecular determinants that confer sensitivity to effects of neuronal eIF2α phosphorylation on development and physiology of C. elegans Isolation and characterization of mutations in eif-2Ba encoding the α-subunit of eIF2B support a conserved role, previously established by studies in yeast, for eIF2Bα in providing a binding site for phosphorylated eIF2α to inhibit the exchange factor eIF2B catalytic activity that is required for translation initiation. We also identified a mutation in eif-2c, encoding the γ-subunit of eIF2, which confers insensitivity to the effects of phosphorylated eIF2α while also altering the requirement for eIF2Bγ. In addition, we show that constitutive expression of eIF2α carrying a phosphomimetic S49D mutation in the ASI pair of sensory neurons confers dramatic effects on growth, metabolism, and reproduction in adult transgenic animals, phenocopying systemic responses to starvation. Furthermore, we show that constitutive expression of eIF2α carrying a phosphomimetic S49D mutation in the ASI neurons enhances dauer entry through bypassing the requirement for nutritionally deficient conditions. Our data suggest that the state of eIF2α phosphorylation in the ASI sensory neuron pair may modulate internal nutrient sensing and signaling pathways, with corresponding organismal effects on development and metabolism.


Assuntos
Caenorhabditis elegans/genética , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/genética , Biossíntese de Proteínas , Animais , Sítios de Ligação , Caenorhabditis elegans/crescimento & desenvolvimento , Fator de Iniciação 2 em Eucariotos/biossíntese , Fator de Iniciação 2B em Eucariotos/biossíntese , Mutação , Fosforilação , Células Receptoras Sensoriais/metabolismo
8.
Hum Factors ; 55(3): 557-66, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23829030

RESUMO

OBJECTIVE: In this study, we evaluated the effects of key spacing on a conventional computer keyboard on typing speed, percentage error, usability, and forearm muscle activity and wrist posture. BACKGROUND: International standards that specify the spacing between keys on a keyboard have been guided primarily by design convention because few studies have evaluated the effects of key spacing on productivity, usability, and biomechanical factors. METHOD: Experienced male typists (N = 37) with large fingers (middle finger length > or = 8.7 cm or finger breadth of > or = 2.3 cm) typed on five keyboards that differed only in horizontal and vertical key spacing (19 x 19 mm, 18 x 19 mm, 17 x 19 mm, 16 x 19 mm, and 17 x 17 mm) while typing speed, percentage error, fatigue, preference, extensor carpi ulnaris and flexor carpi ulnaris muscle activity, and wrist extension and ulnar deviation were recorded. RESULTS: Productivity and usability ratings were significantly worse for the keyboard with spacing of 16 x 19 mm compared with the other keyboards. Differences on these measures between the other keyboards were not significant. Muscle activity tended to increase in the left forearm and decrease in the right with decreasing horizontal key spacing. There was also a trend for left wrist extension to increase and left ulnar deviation to decrease with decreasing horizontal key spacing. Reducing vertical key spacing from 19 to 17 mm had no significant effect on productivity or usability ratings. CONCLUSIONS: The study findings support key spacing on a computer keyboard between 17 and 19 mm in both vertical and horizontal directions. APPLICATIONS: These findings may influence keyboard standards and the design of keyboards.


Assuntos
Periféricos de Computador , Análise e Desempenho de Tarefas , Adolescente , Adulto , Idoso , Fenômenos Biomecânicos , Periféricos de Computador/normas , Eletromiografia , Desenho de Equipamento , Feminino , Antebraço/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Punho/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA