Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 13(4)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35456365

RESUMO

BACKGROUND: The KCNJ2 gene encodes inward rectifier Kir2.1 channels, maintaining resting potential and cell excitability. Presumably, clinical phenotypes of mutation carriers correlate with ion permeability defects. Loss-of-function mutations lead to QTc prolongation with variable dysmorphic features, whereas gain-of-function mutations cause short QT syndrome and/or atrial fibrillation. METHODS: We screened 210 probands with Long QT syndrome for mutations in the KCNJ2 gene. The electrophysiological study was performed for the p.Val93Ile variant in the transfected CHO-K1 cells. RESULTS: We found three rare genetic variants, p.Arg67Trp, p.Val93Ile, and p.R218Q, in three unrelated LQTS probands. Probands with p.Arg67Trp and p.R218Q had a phenotype typical for Andersen-Tawil (ATS), and the p.Val93Ile carrier had lone QTc prolongation. Variant p.Val93Ile was initially described as a gain-of-function pathogenic mutation causing familial atrial fibrillation. We validated electrophysiological features of this variant in CHO-K1 cells, but no family members of these patients had atrial fibrillation. Using ACMG (2015) criteria, we re-assessed this variant as a variant of unknown significance (class III). CONCLUSIONS: LQT7 is a rare form of LQTS in Russia, and accounts for 1% of the LQTS cohort. Variant p.Val93Ile leads to a gain-of-function effect in the different cell lines, but its clinical appearance is not so consistent. The clinical significance of this variant might be overestimated.


Assuntos
Síndrome de Andersen , Fibrilação Atrial , Síndrome do QT Longo , Síndrome de Andersen/genética , Animais , Fibrilação Atrial/genética , Cricetinae , Cricetulus , Humanos , Síndrome do QT Longo/genética , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA