Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(43): e2210109119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251992

RESUMO

The genomes of some purple photosynthetic bacteria contain a multigene puc family encoding a series of α- and ß-polypeptides that together form a heterogeneous antenna of light-harvesting 2 (LH2) complexes. To unravel this complexity, we generated four sets of puc deletion mutants in Rhodopseudomonas palustris, each encoding a single type of pucBA gene pair and enabling the purification of complexes designated as PucA-LH2, PucB-LH2, PucD-LH2, and PucE-LH2. The structures of all four purified LH2 complexes were determined by cryogenic electron microscopy (cryo-EM) at resolutions ranging from 2.7 to 3.6 Å. Uniquely, each of these complexes contains a hitherto unknown polypeptide, γ, that forms an extended undulating ribbon that lies in the plane of the membrane and that encloses six of the nine LH2 αß-subunits. The γ-subunit, which is located near to the cytoplasmic side of the complex, breaks the C9 symmetry of the LH2 complex and binds six extra bacteriochlorophylls (BChls) that enhance the 800-nm absorption of each complex. The structures show that all four complexes have two complete rings of BChls, conferring absorption bands centered at 800 and 850 nm on the PucA-LH2, PucB-LH2, and PucE-LH2 complexes, but, unusually, the PucD-LH2 antenna has only a single strong near-infared (NIR) absorption peak at 803 nm. Comparison of the cryo-EM structures of these LH2 complexes reveals altered patterns of hydrogen bonds between LH2 αß-side chains and the bacteriochlorin rings, further emphasizing the major role that H bonds play in spectral tuning of bacterial antenna complexes.


Assuntos
Bacterioclorofilas , Rodopseudomonas , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Microscopia Crioeletrônica , Complexos de Proteínas Captadores de Luz/metabolismo , Peptídeos/metabolismo , Rodopseudomonas/genética
2.
Nat Commun ; 13(1): 4087, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840580

RESUMO

Kv3 channels have distinctive gating kinetics tailored for rapid repolarization in fast-spiking neurons. Malfunction of this process due to genetic variants in the KCNC1 gene causes severe epileptic disorders, yet the structural determinants for the unusual gating properties remain elusive. Here, we present cryo-electron microscopy structures of the human Kv3.1a channel, revealing a unique arrangement of the cytoplasmic tetramerization domain T1 which facilitates interactions with C-terminal axonal targeting motif and key components of the gating machinery. Additional interactions between S1/S2 linker and turret domain strengthen the interface between voltage sensor and pore domain. Supported by molecular dynamics simulations, electrophysiological and mutational analyses, we identify several residues in the S4/S5 linker which influence the gating kinetics and an electrostatic interaction between acidic residues in α6 of T1 and R449 in the pore-flanking S6T helices. These findings provide insights into gating control and disease mechanisms and may guide strategies for the design of pharmaceutical drugs targeting Kv3 channels.


Assuntos
Ativação do Canal Iônico , Canais de Potássio Shaw , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Canais de Potássio Shaw/química , Canais de Potássio Shaw/genética , Canais de Potássio Shaw/metabolismo , Eletricidade Estática
3.
Sci Adv ; 8(7): eabk3139, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35171663

RESUMO

Phototrophic Gemmatimonadetes evolved the ability to use solar energy following horizontal transfer of photosynthesis-related genes from an ancient phototrophic proteobacterium. The electron cryo-microscopy structure of the Gemmatimonas phototrophica photosystem at 2.4 Å reveals a unique, double-ring complex. Two unique membrane-extrinsic polypeptides, RC-S and RC-U, hold the central type 2 reaction center (RC) within an inner 16-subunit light-harvesting 1 (LH1) ring, which is encircled by an outer 24-subunit antenna ring (LHh) that adds light-gathering capacity. Femtosecond kinetics reveal the flow of energy within the RC-dLH complex, from the outer LHh ring to LH1 and then to the RC. This structural and functional study shows that G. phototrophica has independently evolved its own compact, robust, and highly effective architecture for harvesting and trapping solar energy.

4.
BBA Adv ; 2: 100064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37082593

RESUMO

Light-harvesting complex II (LHCII) present in plants and green algae absorbs solar energy to promote photochemical reactions. A marine green macroalga, Codium fragile, exhibits the unique characteristic of absorbing blue-green light from the sun during photochemical reactions while being underwater owing to the presence of pigment-altered LHCII called siphonaxanthin-chlorophyll a/b-binding protein (SCP). In this study, we determined the structure of SCP at a resolution of 2.78 Å using cryogenic electron microscopy. SCP has a trimeric structure, wherein each monomer containing two lutein and two chlorophyll a molecules in the plant-type LHCII are replaced by siphonaxanthin and its ester and two chlorophyll b molecules, respectively. Siphonaxanthin occupies the binding site in SCP having a polarity in the trimeric inner core, and exhibits a distorted conjugated chain comprising a carbonyl group hydrogen bonded to a cysteine residue of apoprotein. These features suggest that the siphonaxanthin molecule is responsible for the characteristic green absorption of SCP. The replaced chlorophyll b molecules extend the region of the stromal side chlorophyll b cluster, spanning two adjacent monomers.

5.
Biochem J ; 478(21): 3923-3937, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34622934

RESUMO

The dimeric reaction centre light-harvesting 1 (RC-LH1) core complex of Rhodobacter sphaeroides converts absorbed light energy to a charge separation, and then it reduces a quinone electron and proton acceptor to a quinol. The angle between the two monomers imposes a bent configuration on the dimer complex, which exerts a major influence on the curvature of the membrane vesicles, known as chromatophores, where the light-driven photosynthetic reactions take place. To investigate the dimerisation interface between two RC-LH1 monomers, we determined the cryogenic electron microscopy structure of the dimeric complex at 2.9 Šresolution. The structure shows that each monomer consists of a central RC partly enclosed by a 14-subunit LH1 ring held in an open state by PufX and protein-Y polypeptides, thus enabling quinones to enter and leave the complex. Two monomers are brought together through N-terminal interactions between PufX polypeptides on the cytoplasmic side of the complex, augmented by two novel transmembrane polypeptides, designated protein-Z, that bind to the outer faces of the two central LH1 ß polypeptides. The precise fit at the dimer interface, enabled by PufX and protein-Z, by C-terminal interactions between opposing LH1 αß subunits, and by a series of interactions with a bound sulfoquinovosyl diacylglycerol lipid, bring together each monomer creating an S-shaped array of 28 bacteriochlorophylls. The seamless join between the two sets of LH1 bacteriochlorophylls provides a path for excitation energy absorbed by one half of the complex to migrate across the dimer interface to the other half.


Assuntos
Proteínas de Bactérias , Complexos de Proteínas Captadores de Luz , Rhodobacter sphaeroides/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Dimerização , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Estrutura Molecular
6.
Biochemistry ; 60(44): 3302-3314, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34699186

RESUMO

Light-harvesting 2 (LH2) antenna complexes augment the collection of solar energy in many phototrophic bacteria. Despite its frequent role as a model for such complexes, there has been no three-dimensional (3D) structure available for the LH2 from the purple phototroph Rhodobacter sphaeroides. We used cryo-electron microscopy (cryo-EM) to determine the 2.1 Å resolution structure of this LH2 antenna, which is a cylindrical assembly of nine αß heterodimer subunits, each of which binds three bacteriochlorophyll a (BChl) molecules and one carotenoid. The high resolution of this structure reveals all of the interpigment and pigment-protein interactions that promote the assembly and energy-transfer properties of this complex. Near the cytoplasmic face of the complex there is a ring of nine BChls, which absorb maximally at 800 nm and are designated as B800; each B800 is coordinated by the N-terminal carboxymethionine of LH2-α, part of a network of interactions with nearby residues on both LH2-α and LH2-ß and with the carotenoid. Nine carotenoids, which are spheroidene in the strain we analyzed, snake through the complex, traversing the membrane and interacting with a ring of 18 BChls situated toward the periplasmic side of the complex. Hydrogen bonds with C-terminal aromatic residues modify the absorption of these pigments, which are red-shifted to 850 nm. Overlaps between the macrocycles of the B850 BChls ensure rapid transfer of excitation energy around this ring of pigments, which act as the donors of energy to neighboring LH2 and reaction center light-harvesting 1 (RC-LH1) complexes.


Assuntos
Proteínas de Bactérias/ultraestrutura , Complexos de Proteínas Captadores de Luz/metabolismo , Complexos de Proteínas Captadores de Luz/ultraestrutura , Proteínas de Bactérias/metabolismo , Bacterioclorofila A/metabolismo , Carotenoides/química , Carotenoides/metabolismo , Microscopia Crioeletrônica/métodos , Transferência de Energia , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/ultraestrutura
7.
Biochem J ; 478(20): 3775-3790, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34590677

RESUMO

Reaction centre light-harvesting 1 (RC-LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC-LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Šresolution structure of one such RC-LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αß heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could impede passage of quinones through small, transient pores in the LH1 ring, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilising an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11-14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered quinone diffusion.


Assuntos
Proteínas de Bactérias/química , Complexos de Proteínas Captadores de Luz/química , Peptídeos/química , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Rhodobacter sphaeroides/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/metabolismo , Sítios de Ligação , Carotenoides/química , Carotenoides/metabolismo , Microscopia Crioeletrônica , Expressão Gênica , Hidroquinonas/química , Hidroquinonas/metabolismo , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Rhodobacter sphaeroides/efeitos da radiação
8.
Biochem J ; 478(17): 3253-3263, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402504

RESUMO

The reaction centre light-harvesting 1 (RC-LH1) complex is the core functional component of bacterial photosynthesis. We determined the cryo-electron microscopy (cryo-EM) structure of the RC-LH1 complex from Rhodospirillum rubrum at 2.5 Šresolution, which reveals a unique monomeric bacteriochlorophyll with a phospholipid ligand in the gap between the RC and LH1 complexes. The LH1 complex comprises a circular array of 16 αß-polypeptide subunits that completely surrounds the RC, with a preferential binding site for a quinone, designated QP, on the inner face of the encircling LH1 complex. Quinols, initially generated at the RC QB site, are proposed to transiently occupy the QP site prior to traversing the LH1 barrier and diffusing to the cytochrome bc1 complex. Thus, the QP site, which is analogous to other such sites in recent cryo-EM structures of RC-LH1 complexes, likely reflects a general mechanism for exporting quinols from the RC-LH1 complex.


Assuntos
Proteínas de Bactérias/química , Microscopia Crioeletrônica/métodos , Complexos de Proteínas Captadores de Luz/química , Rhodospirillum rubrum/química , Proteínas de Bactérias/isolamento & purificação , Bacterioclorofilas/química , Benzoquinonas/química , Sítios de Ligação , Cristalização , Complexo III da Cadeia de Transporte de Elétrons/química , Ligação de Hidrogênio , Hidroquinonas/química , Ligantes , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Fosfolipídeos/química , Conformação Proteica em alfa-Hélice
9.
Nat Commun ; 12(1): 1694, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727554

RESUMO

The lipid-enveloped influenza C virus contains a single surface glycoprotein, the haemagglutinin-esterase-fusion (HEF) protein, that mediates receptor binding, receptor destruction, and membrane fusion at the low pH of the endosome. Here we apply electron cryotomography and subtomogram averaging to describe the structural basis for hexagonal lattice formation by HEF on the viral surface. The conformation of the glycoprotein in situ is distinct from the structure of the isolated trimeric ectodomain, showing that a splaying of the membrane distal domains is required to mediate contacts that form the lattice. The splaying of these domains is also coupled to changes in the structure of the stem region which is involved in membrane fusion, thereby linking HEF's membrane fusion conformation with its assembly on the virus surface. The glycoprotein lattice can form independent of other virion components but we show a major role for the matrix layer in particle formation.


Assuntos
Gammainfluenzavirus/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Animais , Cães , Hemaglutininas Virais/química , Hemaglutininas Virais/metabolismo , Gammainfluenzavirus/ultraestrutura , Células Madin Darby de Rim Canino , Fusão de Membrana , Modelos Moleculares , Multimerização Proteica , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Vírion/ultraestrutura
10.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33526596

RESUMO

The RNA polymerase inhibitor favipiravir is currently in clinical trials as a treatment for infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), despite limited information about the molecular basis for its activity. Here we report the structure of favipiravir ribonucleoside triphosphate (favipiravir-RTP) in complex with the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) bound to a template:primer RNA duplex, determined by electron cryomicroscopy (cryoEM) to a resolution of 2.5 Å. The structure shows clear evidence for the inhibitor at the catalytic site of the enzyme, and resolves the conformation of key side chains and ions surrounding the binding pocket. Polymerase activity assays indicate that the inhibitor is weakly incorporated into the RNA primer strand, and suppresses RNA replication in the presence of natural nucleotides. The structure reveals an unusual, nonproductive binding mode of favipiravir-RTP at the catalytic site of SARS-CoV-2 RdRp, which explains its low rate of incorporation into the RNA primer strand. Together, these findings inform current and future efforts to develop polymerase inhibitors for SARS coronaviruses.


Assuntos
Amidas/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Inibidores Enzimáticos/farmacologia , Pirazinas/farmacologia , SARS-CoV-2/ultraestrutura , Amidas/química , RNA-Polimerase RNA-Dependente de Coronavírus/antagonistas & inibidores , RNA-Polimerase RNA-Dependente de Coronavírus/química , Microscopia Crioeletrônica/métodos , Inibidores Enzimáticos/química , Pirazinas/química , Ribonucleotídeos/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Imagem Individual de Molécula/métodos
11.
Sci Adv ; 7(7)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33579696

RESUMO

We report the 2.4 Ångström resolution structure of the light-harvesting 2 (LH2) complex from Marichromatium (Mch.) purpuratum determined by cryogenic electron microscopy. The structure contains a heptameric ring that is unique among all known LH2 structures, explaining the unusual spectroscopic properties of this bacterial antenna complex. We identify two sets of distinct carotenoids in the structure and describe a network of energy transfer pathways from the carotenoids to bacteriochlorophyll a molecules. The geometry imposed by the heptameric ring controls the resonant coupling of the long-wavelength energy absorption band. Together, these details reveal key aspects of the assembly and oligomeric form of purple bacterial LH2 complexes that were previously inaccessible by any technique.

12.
Acta Crystallogr D Struct Biol ; 76(Pt 4): 313-325, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32254055

RESUMO

Cryo-electron microscopy (cryo-EM) has rapidly expanded with the introduction of direct electron detectors, improved image-processing software and automated image acquisition. Its recent adoption by industry, particularly in structure-based drug design, creates new requirements in terms of reliability, reproducibility and throughput. In 2016, Thermo Fisher Scientific (then FEI) partnered with the Medical Research Council Laboratory of Molecular Biology, the University of Cambridge Nanoscience Centre and five pharmaceutical companies [Astex Pharmaceuticals, AstraZeneca, GSK, Sosei Heptares and Union Chimique Belge (UCB)] to form the Cambridge Pharmaceutical Cryo-EM Consortium to share the risks of exploring cryo-EM for early-stage drug discovery. The Consortium expanded with a second Themo Scientific Krios Cryo-EM at the University of Cambridge Department of Materials Science and Metallurgy. Several Consortium members have set up in-house facilities, and a full service cryo-EM facility with Krios and Glacios has been created with the Electron Bio-Imaging Centre for Industry (eBIC for Industry) at Diamond Light Source (DLS), UK. This paper will cover the lessons learned during the setting up of these facilities, including two Consortium Krios microscopes and preparation laboratories, several Glacios microscopes at Consortium member sites, and a Krios and Glacios at eBIC for Industry, regarding site evaluation and selection for high-resolution cryo-EM microscopes, the installation process, scheduling, the operation and maintenance of the microscopes and preparation laboratories, and image processing.


Assuntos
Microscopia Crioeletrônica/instrumentação , Processamento de Imagem Assistida por Computador , Laboratórios/organização & administração , Instalações Industriais e de Manufatura/organização & administração , Descoberta de Drogas , Indústria Farmacêutica , Reprodutibilidade dos Testes , Universidades
13.
EBioMedicine ; 51: 102607, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31918402

RESUMO

BACKGROUND: PLCγ enzymes are key nodes in cellular signal transduction and their mutated and rare variants have been recently implicated in development of a range of diseases with unmet need including cancer, complex immune disorders, inflammation and neurodegenerative diseases. However, molecular nature of activation and the impact and dysregulation mechanisms by mutations, remain unclear; both are critically dependent on comprehensive characterization of the intact PLCγ enzymes. METHODS: For structural studies we applied cryo-EM, cross-linking mass spectrometry and hydrogen-deuterium exchange mass spectrometry. In parallel, we compiled mutations linked to main pathologies, established their distribution and assessed their impact in cells and in vitro. FINDINGS: We define structure of a complex containing an intact, autoinhibited PLCγ1 and the intracellular part of FGFR1 and show that the interaction is centred on the nSH2 domain of PLCγ1. We define the architecture of PLCγ1 where an autoinhibitory interface involves the cSH2, spPH, TIM-barrel and C2 domains; this relative orientation occludes PLCγ1 access to its substrate. Based on this framework and functional characterization, the mechanism leading to an increase in PLCγ1 activity for the largest group of mutations is consistent with the major, direct impact on the autoinhibitory interface. INTERPRETATION: We reveal features of PLCγ enzymes that are important for determining their activation status. Targeting such features, as an alternative to targeting the PLC active site that has so far not been achieved for any PLC, could provide new routes for clinical interventions related to various pathologies driven by PLCγ deregulation. FUND: CR UK, MRC and AstaZeneca.


Assuntos
Mutação/genética , Fosfolipase C gama/química , Fosfolipase C gama/genética , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fosfolipase C gama/ultraestrutura , Ligação Proteica , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
14.
Nat Commun ; 10(1): 5822, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862888

RESUMO

The HML2 (HERV-K) group constitutes the most recently acquired family of human endogenous retroviruses, with many proviruses less than one million years old. Many maintain intact open reading frames and provirus expression together with HML2 particle formation are observed in early stage human embryo development and are associated with pluripotency as well as inflammatory disease, cancers and HIV-1 infection. Here, we reconstruct the core structural protein (CA) of an HML2 retrovirus, assemble particles in vitro and employ single particle cryogenic electron microscopy (cryo-EM) to determine structures of four classes of CA Fullerene shell assemblies. These icosahedral and capsular assemblies reveal at high-resolution the molecular interactions that allow CA to form both pentamers and hexamers and show how invariant pentamers and structurally plastic hexamers associate to form the unique polyhedral structures found in retroviral cores.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Capsídeo/ultraestrutura , Retrovirus Endógenos/ultraestrutura , Fulerenos/química , Estrutura Quaternária de Proteína , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/isolamento & purificação , Microscopia Crioeletrônica/métodos , Cristalografia por Raios X , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/ultraestrutura , Imagem Individual de Molécula/métodos
15.
J Control Release ; 314: 116-124, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31647980

RESUMO

Mycobacterium tuberculosis (Mtb) remains a major challenge to global health, made worse by the spread of multi-drug resistance. Currently, the efficacy and safety of treatment is limited by difficulties in achieving and sustaining adequate tissue antibiotic concentrations while limiting systemic drug exposure to tolerable levels. Here we show that nanoparticles generated from a polymer-antibiotic conjugate ('nanobiotics') deliver sustained release of active drug upon hydrolysis in acidic environments, found within Mtb-infected macrophages and granulomas, and can, by encapsulation of a second antibiotic, provide a mechanism of synchronous drug delivery. Nanobiotics are avidly taken up by infected macrophages, enhance killing of intracellular Mtb, and are efficiently delivered to granulomas and extracellular mycobacterial cords in vivo in an infected zebrafish model. We demonstrate that isoniazid (INH)-derived nanobiotics, alone or with additional encapsulation of clofazimine (CFZ), enhance killing of mycobacteria in vitro and in infected zebrafish, supporting the use of nanobiotics for Mtb therapy and indicating that nanoparticles generated from polymer-small molecule conjugates might provide a more general solution to delivering co-ordinated combination chemotherapy.


Assuntos
Antituberculosos/administração & dosagem , Isoniazida/administração & dosagem , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas , Animais , Antituberculosos/farmacologia , Clofazimina/administração & dosagem , Clofazimina/farmacologia , Preparações de Ação Retardada , Modelos Animais de Doenças , Combinação de Medicamentos , Sistemas de Liberação de Medicamentos , Humanos , Isoniazida/farmacologia , Macrófagos/microbiologia , Polímeros/química , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Peixe-Zebra
16.
Nano Lett ; 13(9): 4020-7, 2013 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-23984706

RESUMO

The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.

17.
J Struct Biol ; 183(3): 531-536, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23664842

RESUMO

Images of radiation-sensitive specimens obtained by electron microscopy suffer a reduction in quality beyond that expected from radiation damage alone due to electron beam-induced charging or movement of the specimen. For biological specimens, charging and movement are most severe when they are suspended in an insulating layer of vitreous ice, which is otherwise optimal for preserving hydrated specimens in a near native state. We image biological specimens, including a single particle protein complex and a lipid-enveloped virus in thin, vitreous ice films over suspended sheets of unmodified graphene. We show that in such preparations, the charging of ice, as assessed by electron-optical perturbation of the imaging beam, is eliminated. We also use the same specimen supports to record high resolution images at liquid nitrogen temperature of monolayer paraffin crystals grown over graphene.


Assuntos
Microscopia Crioeletrônica/métodos , Criopreservação/métodos , Grafite/química , Apoferritinas/ultraestrutura , Cristalografia , Microscopia Eletrônica de Transmissão/métodos , Orthomyxoviridae/ultraestrutura , Parafina/química , Vírion/ultraestrutura
18.
Biophys J ; 99(10): 3336-44, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21081082

RESUMO

We have studied the shape of myosin VI, the actin minus-end directed motor, by negative stain and metal shadow electron microscopy. Single particle processing was used to make two-dimensional averages of the stain images, which greatly increases the clarity and allows detailed comparisons with crystal structures. A total of 169,964 particle images were obtained from two different constructs in six different states (four nucleotide states and with and without Ca(2+)). The shape of truncated apo myosin VI was very similar to the apo crystal structure, with the lever arm bent strongly backward and around the motor domain. In the full-length molecule, the C-terminal part of the tail has an additional bend taking it back across the motor domain, which may reflect a regulated state. Addition of ATP, ADP, or ATP-γS resulted in a large change, straightening the molecule from the bent shape and swinging the lever by ∼140°. Although these nucleotides would not be expected to produce the pre-powerstroke state, myosin VI in their presence was most similar to the truncated crystal structure with bound ADP-VO(4), which is thought to show the pre-powerstroke shape. The nucleotide data were therefore substantially different from expectation based on crystal structures. The full-length molecule was almost completely monomeric; only ∼1% were dimers, joined through the ends of the tail. Addition of calcium ions appeared to result in release of the second calmodulin light chain. In negatively stained molecules there was little indication of extended α-helical structure in the tail, but molecules viewed by metal shadowing had a tail ∼3× longer, 29 vs. 9 nm, part of which is likely to be a single α-helix.


Assuntos
Cadeias Pesadas de Miosina/química , Nucleotídeos/farmacologia , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Apoproteínas/química , Apoproteínas/ultraestrutura , Cálcio/farmacologia , Galinhas , Cadeias Pesadas de Miosina/ultraestrutura , Multimerização Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína
19.
ACS Nano ; 4(7): 3943-8, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20557070

RESUMO

In this paper, a chemically sensitive local characterization technique is used to characterize fullerene peapods containing two metal atoms within each fullerene. By combining bright-field imaging, high-angle annular dark-field imaging, and electron energy loss spectroscopy in a scanning transmission electron microscope, unambiguous identification of the metal atoms present is possible. Key to making this possible is aberration correction, which allows atomic resolution at lower beam energies. The peapods can be imaged for several consecutive scans at 80 keV beam energy, and the combination of techniques allows the position as well as the species of the encapsulated atoms to be identified. Movements of the encapsulated atoms are monitored.

20.
Ultramicroscopy ; 110(1): 43-7, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19819624

RESUMO

We have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.1A were obtained. The crystals were high pressure frozen in 30% dextran, and cryo-sectioned using a diamond knife. In the best case, preservation to a resolution of 7.9A was shown by electron diffraction, the first observation of sub-nanometre structural preservation in a vitreous section.


Assuntos
Microscopia Crioeletrônica/métodos , Criopreservação/métodos , Crioultramicrotomia/métodos , Animais , Galinhas , Cristalização , Clara de Ovo , Feminino , Muramidase/química , Muramidase/ultraestrutura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA