Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 327(5973): 1619-21, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20150446

RESUMO

Astrophysical observations indicate that dark matter constitutes most of the mass in our universe, but its nature remains unknown. Over the past decade, the Cryogenic Dark Matter Search (CDMS II) experiment has provided world-leading sensitivity for the direct detection of weakly interacting massive particle (WIMP) dark matter. The final exposure of our low-temperature germanium particle detectors at the Soudan Underground Laboratory yielded two candidate events, with an expected background of 0.9 +/- 0.2 events. This is not statistically significant evidence for a WIMP signal. The combined CDMS II data place the strongest constraints on the WIMP-nucleon spin-independent scattering cross section for a wide range of WIMP masses and exclude new parameter space in inelastic dark matter models.

2.
Phys Rev Lett ; 103(14): 141802, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19905561

RESUMO

We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling g(agammagamma) of 2.4x10(-9) GeV-1 at the 95% confidence level for an axion mass less than 0.1 keV/c2. This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The galactic axion search analysis sets a world-leading experimental upper limit on the axioelectric coupling g(aee) of 1.4x10(-12) at the 90% confidence level for an axion mass of 2.5 keV/c2.

3.
Phys Rev Lett ; 102(1): 011301, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19257177

RESUMO

We report results from the Cryogenic Dark Matter Search at the Soudan Underground Laboratory (CDMS II) featuring the full complement of 30 detectors. A blind analysis of data taken between October 2006 and July 2007 sets an upper limit on the weakly interacting massive particle (WIMP) nucleon spin-independent cross section of 6.6x10;{-44} cm;{2} (4.6x10;{-44} cm;{2} when combined with previous CDMS II data) at the 90% confidence level for a WIMP mass of 60 GeV/c;{2}. This achieves the best sensitivity for dark matter WIMPs with masses above 44 GeV/c;{2}, and significantly restricts the parameter space for some favored supersymmetric models.

4.
Phys Rev Lett ; 96(1): 011302, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16486434

RESUMO

We report new results from the Cryogenic Dark Matter Search (CDMS II) at the Soudan Underground Laboratory. Two towers, each consisting of six detectors, were operated for 74.5 live days, giving spectrum-weighted exposures of 34 (12) kg d for the Ge (Si) targets after cuts, averaged over recoil energies 10-100 keV for a weakly interacting massive particle (WIMP) mass of 60 GeV/c2. A blind analysis was conducted, incorporating improved techniques for rejecting surface events. No WIMP signal exceeding expected backgrounds was observed. When combined with our previous results from Soudan, the 90% C.L. upper limit on the spin-independent WIMP-nucleon cross section is 1.6 x 10(-43) cm2 from Ge and 3 x 10(-42) cm2 from Si, for a WIMP mass of 60 GeV/c2. The combined limit from Ge (Si) is a factor of 2.5 (10) lower than our previous results and constrains predictions of supersymmetric models.

5.
Phys Rev Lett ; 84(25): 5699-703, 2000 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-10991035

RESUMO

The Cryogenic Dark Matter Search (CDMS) employs Ge and Si detectors to search for weakly interacting massive particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. CDMS data, accounting for the neutron background, give limits on the spin-independent WIMP-nucleon elastic-scattering cross section that exclude unexplored parameter space above 10 GeV/c2 WIMP mass and, at >75% C.L., the entire 3sigma allowed region for the WIMP signal reported by the DAMA experiment.

8.
Ann N Y Acad Sci ; 688: xiii-xiv, 1993 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26469513
14.
Phys Rev Lett ; 61(5): 510-513, 1988 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-10039354
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA