Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 19(1): 532, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791233

RESUMO

BACKGROUND: Although the most common path of infection for fire blight, a severe bacterial disease on apple, is via host plant flowers, quantitative trait loci (QTLs) for fire blight resistance to date have exclusively been mapped following shoot inoculation. It is not known whether the same mechanism underlies flower and shoot resistance. RESULTS: We report the detection of a fire blight resistance QTL following independent artificial inoculation of flowers and shoots on two F1 segregating populations derived from crossing resistant Malus ×robusta 5 (Mr5) with susceptible 'Idared' and 'Royal Gala' in experimental orchards in Germany and New Zealand, respectively. QTL mapping of phenotypic datasets from artificial flower inoculation of the 'Idared' × Mr5 population with Erwinia amylovora over several years, and of the 'Royal Gala' × Mr5 population in a single year, revealed a single major QTL controlling floral fire blight resistance on linkage group 3 (LG3) of Mr5. This QTL corresponds to the QTL on LG3 reported previously for the 'Idared' × Mr5 and an 'M9' × Mr5 population following shoot inoculation in the glasshouse. Interval mapping of phenotypic data from shoot inoculations of subsets from both flower resistance populations re-confirmed that the resistance QTL is in the same position on LG3 of Mr5 as that for flower inoculation. These results provide strong evidence that fire blight resistance in Mr5 is controlled by a major QTL on LG3, independently of the mode of infection, rootstock and environment. CONCLUSIONS: This study demonstrates for the first time that resistance to fire blight caused by Erwinia amylovora is independent of the mode of inoculation at least in Malus ×robusta 5.


Assuntos
Resistência à Doença/genética , Erwinia amylovora/fisiologia , Genes de Plantas , Ligação Genética , Malus/microbiologia , Doenças das Plantas/genética , Flores/microbiologia , Flores/fisiologia , Malus/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
2.
BMC Plant Biol ; 14: 241, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25224302

RESUMO

BACKGROUND: The unattractive appearance of the surface of pear fruit caused by the postharvest disorder friction discolouration (FD) is responsible for significant consumer dissatisfaction in markets, leading to lower returns to growers. Developing an understanding of the genetic control of FD is essential to enable the full application of genomics-informed breeding for the development of new pear cultivars. Biochemical constituents [phenolic compounds and ascorbic acid (AsA)], polyphenol oxidase (PPO) activity, as well as skin anatomy, have been proposed to play important roles in FD susceptibility in studies on a limited number of cultivars. However, to date there has been no investigation on the biochemical and genetic control of FD, employing segregating populations. In this study, we used 250 seedlings from two segregating populations (POP369 and POP356) derived from interspecific crosses between Asian (Pyrus pyrifolia Nakai and P. bretschneideri Rehd.) and European (P. communis) pears to identify genetic factors associated with susceptibility to FD. RESULTS: Single nucleotide polymorphism (SNP)-based linkage maps suitable for QTL analysis were developed for the parents of both populations. The maps for population POP369 comprised 174 and 265 SNP markers for the male and female parent, respectively, while POP356 maps comprised 353 and 398 SNP markers for the male and female parent, respectively. Phenotypic data for 22 variables were measured over two successive years (2011 and 2012) for POP369 and one year (2011) only for POP356. A total of 221 QTLs were identified that were linked to 22 phenotyped variables, including QTLs associated with FD for both populations that were stable over the successive years. In addition, clear evidence of the influence of developmental factors (fruit maturity) on FD and other variables was also recorded. CONCLUSIONS: The QTLs associated with fruit firmness, PPO activity, AsA concentration and concentration of polyphenol compounds as well as FD are the first reported for pear. We conclude that the postharvest disorder FD is controlled by multiple small effect QTLs and that it will be very challenging to apply marker-assisted selection based on these QTLs. However, genomic selection could be employed to select elite genotypes with lower or no susceptibility to FD early in the breeding cycle.


Assuntos
Frutas/fisiologia , Genoma de Planta/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Pyrus/fisiologia , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Fricção , Frutas/genética , Frutas/crescimento & desenvolvimento , Ligação Genética , Marcadores Genéticos/genética , Genótipo , Fenótipo , Pigmentação , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/crescimento & desenvolvimento , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia
3.
PLoS One ; 9(4): e92644, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24699266

RESUMO

We present a draft assembly of the genome of European pear (Pyrus communis) 'Bartlett'. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of 'Louise Bonne de Jersey' and 'Old Home'. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malus × domestica). The 'Bartlett' genome assembly v1.0 (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.


Assuntos
Cromossomos de Plantas/genética , Genes de Plantas , Genoma de Planta , Pyrus/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Europa (Continente) , Evolução Molecular , Marcadores Genéticos , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Malus/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Proteoma/análise , RNA de Plantas/genética , Sequências Repetitivas de Ácido Nucleico
4.
PLoS One ; 8(10): e77022, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24155917

RESUMO

We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.


Assuntos
Mapeamento Cromossômico , Hibridização Genética , Polimorfismo de Nucleotídeo Único/genética , Pyrus/genética , Alelos , Sequência de Bases , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Europa (Continente) , Marcadores Genéticos , Genoma de Planta/genética , Técnicas de Genotipagem , Malus/genética , Repetições de Microssatélites/genética , Linhagem , Seleção Genética , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA