Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 8: 383, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439269

RESUMO

BACKGROUND: The transcription factor Ets1 is highly expressed in B lymphocytes. Loss of Ets1 leads to premature B cell differentiation into antibody-secreting cells (ASCs), secretion of autoantibodies, and development of autoimmune disease. Despite the importance of Ets1 in B cell biology, few Ets1 target genes are known in these cells. RESULTS: To obtain a more complete picture of the function of Ets1 in regulating B cell differentiation, we performed Ets1 ChIP-seq in primary mouse B cells to identify >10,000-binding sites, many of which were localized near genes that play important roles in B cell activation and differentiation. Although Ets1 bound to many sites in the genome, it was required for regulation of less than 5% of them as evidenced by gene expression changes in B cells lacking Ets1. The cohort of genes whose expression was altered included numerous genes that have been associated with autoimmune disease susceptibility. We focused our attention on four such Ets1 target genes Ptpn22, Stat4, Egr1, and Prdm1 to assess how they might contribute to Ets1 function in limiting ASC formation. We found that dysregulation of these particular targets cannot explain altered ASC differentiation in the absence of Ets1. CONCLUSION: We have identified genome-wide binding targets for Ets1 in B cells and determined that a relatively small number of these putative target genes require Ets1 for their normal expression. Interestingly, a cohort of genes associated with autoimmune disease susceptibility is among those that are regulated by Ets1. Identification of the target genes of Ets1 in B cells will help provide a clearer picture of how Ets1 regulates B cell responses and how its loss promotes autoantibody secretion.

2.
J Immunol ; 195(5): 1955-63, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26209625

RESUMO

Tight control of B cell differentiation into plasma cells (PCs) is critical for proper immune responses and the prevention of autoimmunity. The Ets1 transcription factor acts in B cells to prevent PC differentiation. Ets1(-/-) mice accumulate PCs and produce autoantibodies. Ets1 expression is downregulated upon B cell activation through the BCR and TLRs and is maintained by the inhibitory signaling pathway mediated by Lyn, CD22 and SiglecG, and SHP-1. In the absence of these inhibitory components, Ets1 levels are reduced in B cells in a Btk-dependent manner. This leads to increased PCs, autoantibodies, and an autoimmune phenotype similar to that of Ets1(-/-) mice. Defects in inhibitory signaling molecules, including Lyn and Ets1, are associated with human lupus, although the effects are more subtle than the complete deficiency that occurs in knockout mice. In this study, we explore the effect of partial disruption of the Lyn/Ets1 pathway on B cell tolerance and find that Lyn(+/-)Ets1(+/-) mice demonstrate greater and earlier production of IgM, but not IgG, autoantibodies compared with Lyn(+/-) or Ets1(+/-) mice. We also show that Btk-dependent downregulation of Ets1 is important for normal PC homeostasis when inhibitory signaling is intact. Ets1 deficiency restores the decrease in steady state PCs and Ab levels observed in Btk(-/-) mice. Thus, depending on the balance of activating and inhibitory signals to Ets1, there is a continuum of effects on autoantibody production and PC maintenance. This ranges from full-blown autoimmunity with complete loss of Ets1-maintaining signals to reduced PC and Ab levels with impaired Ets1 downregulation.


Assuntos
Anticorpos/imunologia , Proteínas Tirosina Quinases/imunologia , Proteína Proto-Oncogênica c-ets-1/imunologia , Quinases da Família src/imunologia , Tirosina Quinase da Agamaglobulinemia , Animais , Anticorpos/metabolismo , Autoanticorpos/sangue , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Western Blotting , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Ensaio de Imunoadsorção Enzimática , Epistasia Genética , Citometria de Fluxo , Expressão Gênica/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmócitos/imunologia , Plasmócitos/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Baço/imunologia , Baço/metabolismo , Esplenomegalia/genética , Esplenomegalia/imunologia , Esplenomegalia/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA