RESUMO
Exploiting multiferroic BiFeO3 thin films in spintronic devices requires deterministic and robust control of both internal magnetoelectric coupling in BiFeO3, as well as exchange coupling of its antiferromagnetic order to a ferromagnetic overlayer. Previous reports utilized approaches based on multi-step ferroelectric switching with multiple ferroelectric domains. Because domain walls can be responsible for fatigue, contain localized charges intrinsically or via defects, and present problems for device reproducibility and scaling, an alternative approach using a monodomain magnetoelectric state with single-step switching is desirable. Here we demonstrate room temperature, deterministic and robust, exchange coupling between monodomain BiFeO3 films and Co overlayer that is intrinsic (i.e., not dependent on domain walls). Direct coupling between BiFeO3 antiferromagnetic order and Co magnetization is observed, with ~ 90° in-plane Co moment rotation upon single-step switching that is reproducible for hundreds of cycles. This has important consequences for practical, low power non-volatile magnetoelectric devices utilizing BiFeO3.
RESUMO
The physical properties of epitaxial films can fundamentally differ from those of bulk single crystals even above the critical thickness. By a combination of nonresonant x-ray magnetic scattering, neutron diffraction and vector-mapped x-ray magnetic linear dichroism photoemission electron microscopy, we show that epitaxial (111)-BiFeO_{3} films support submicron antiferromagnetic domains, which are magnetoelastically coupled to a coherent crystallographic monoclinic twin structure. This unique texture, which is absent in bulk single crystals, should enable control of magnetism in BiFeO_{3} film devices via epitaxial strain.