Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(4): e15116, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151684

RESUMO

Each year, Africa loses half of its harvest to pests (insects, pathogens, nematodes, weeds). To offset these losses and improve food security, pest management needs to be revamped urgently. Based on a synthesis of all 58 pest management projects conducted by IITA in its 55-year history, we advocate here for the implementation of the five following key climate-smart interventions, which have been shown to increase yields and decreasing CO2 outputs compared to the current practices that are largely based on the use of synthetic pesticides: 1. Sanitation at the country's borders and at the field level is the most cost-efficient way to prevent pest damage and losses from exotic pests entering new territories. 2. Good soil management strengthens the crop plant and enhances the effectiveness of all other interventions. 3. Biological control is the quickest and in the long run most cost-effective way to control invading insect pests and weeds. 4. Resistant varieties are often the only way to control already established diseases and are a mainstay control method in combination with other practices. 5. Various bio-pesticides based on viruses, bacteria and fungi against insects have been commercialized or can be produced on-farm; they are to replace synthetic pesticides, which continue to have large negative impacts on the environment and human health. To apply these five practices, new decision-support and climate services tools should be used to empower low-literacy farmers to take timely decisions about pest control and to act as business partners. Meanwhile, all actors in the pest control community should account for their environmental costs, which up to now are born solely by the community, while profits from pesticide sales are pocketed privately. To successfully disseminate these practices across the continent, enhanced and harmonized policy support is required.

2.
Insects ; 13(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35735828

RESUMO

Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith, 1797) (Lepidoptera: Noctuidae) was recorded for the first time in 2016 attacking maize fields in central and west Africa. Soon after, several other regions and countries have reported the pest in almost the entire sub-Saharan Africa. In the present study, we assumed that (i) a variety of alternative plant species host FAW, especially during maize off-season, (ii) a wide range of local parasitoids have adapted to FAW and (iii) parasitoid species composition and abundance vary across seasons. During a two-year survey (from June 2018 to January 2020), parasitoids and alternative host plants were identified from maize and vegetable production sites, along streams and lowlands, on garbage dumps and old maize fields in southern and partly in the central part of Benin during both maize growing- and off-season. A total of eleven new host plant species were reported for the first time, including Cymbopogon citratus (de Candolle) Stapf (cultivated lemon grass), Bulbostylis coleotricha (A. Richard) Clarke and Pennisetum macrourum von Trinius (wild). The survey revealed seven parasitoid species belonging to four families, namely Platygastridae, Braconidae, Ichneumonidae, and Tachinidae associated with FAW on maize and alternative host plants. The most abundant parasitoid species across seasons was the egg parasitoid Telenomus remus (Nixon) (Hymenoptera: Platygastridae). These findings demonstrate FAW capability to be active during the maize off-season in the selected agro-ecologies and provide baseline information for classical and augmentative biocontrol efforts.

3.
Insects ; 12(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072988

RESUMO

Fall armyworm (FAW) Spodoptera frugiperda (J.E. Smith) and southern armyworm (SAW) Spodoptera eridania (Stoll) have become major threats to crops in Africa since 2016. African governments adopted emergency actions around chemical insecticides, with limited efforts to assess the richness or roles of indigenous natural enemies. Field surveys and laboratory studies were conducted to identify and assess the performance of parasitoids associated with spodopterans in Cameroon. FAW was the most abundant spodopteran pest. Telenomus remus (Nixon), Trichogramma chilonis (Ishi), Charops sp. (Szépligeti), Coccygidium luteum (Cameron), Cotesia icipe (Fernandez & Fiaboe), and Cotesia sesamiae (Cameron) are the first records in the country on spodopterans. Telenomus remus, T. chilonis, C. icipe, and Charops sp. were obtained from both FAW and SAW; C. luteum and C. sesamiae from FAW. The distribution of spodopterans, their endoparasitoids, and parasitism rates varied with host, season and location. In the laboratory, T. remus showed significantly higher parasitism on FAW than SAW, and significant differences in the development parameters between the two host eggs, with shorter development time on FAW. It induced significant non-reproductive mortality on FAW but not on SAW. Developmental parameters showed that C. icipe has a shorter development time compared to other larval parasitoids. Implications for conservative and augmentative biocontrol are discussed.

4.
Pest Manag Sci ; 77(10): 4437-4446, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33991052

RESUMO

BACKGROUND: The southern armyworm (SAW) Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae) is native to the tropical Americas where the pest can feed on more than 100 plant species. SAW was recently detected in West and Central Africa, feeding on various crops including cassava, cotton, amaranth and tomato. The current work was carried out to predict the potential spatial distribution of SAW and four of its co-evolved parasitoids at a global scale using the maximum entropy (Maxent) algorithm. RESULTS: SAW may not be a huge problem outside its native range (the Americas) for the time being, but may compromise crop yields in specific hotspots in coming years. The analysis of its potential distribution anticipates that the pest might easily migrate east and south from Cameroon and Gabon. CONCLUSION: The models used generally demonstrate that all the parasitoids considered are good candidates for the biological control of SAW globally, except they will not be able to establish in specific climates. The current paper discusses the potential role of biological control using parasitoids as a crucial component of a durable climate-smart integrated management of SAW to support decision making in Africa and in other regions of bioclimatic suitability. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Espécies Introduzidas , Mariposas , África Central , Animais , Produtos Agrícolas , Spodoptera
5.
Insects ; 12(4)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804807

RESUMO

The present study is the first modeling effort at a global scale to predict habitat suitability of fall armyworm (FAW), Spodoptera frugiperda and its key parasitoids, namely Chelonus insularis, Cotesia marginiventris,Eiphosoma laphygmae,Telenomus remus and Trichogramma pretiosum, to be considered for biological control. An adjusted procedure of a machine-learning algorithm, the maximum entropy (Maxent), was applied for the modeling experiments. Model predictions showed particularly high establishment potential of the five hymenopteran parasitoids in areas that are heavily affected by FAW (like the coastal belt of West Africa from Côte d'Ivoire (Ivory Coast) to Nigeria, the Congo basin to Eastern Africa, Eastern, Southern and Southeastern Asia and some portions of Eastern Australia) and those of potential invasion risks (western & southern Europe). These habitats can be priority sites for scaling FAW biocontrol efforts. In the context of global warming and the event of accidental FAW introduction, warmer parts of Europe are at high risk. The effect of winter on the survival and life cycle of the pest in Europe and other temperate regions of the world are discussed in this paper. Overall, the models provide pioneering information to guide decision making for biological-based medium and long-term management of FAW across the globe.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30036953

RESUMO

Lambda-cyhalothrin (λ-cyhalothrin) is the most commonly used pyrethroid insecticide for vegetable farming in Benin. This insecticide is misused and overused by farmers, and hence may pose health hazards to consumers. We monitored λ-cyhalothrin residues in lettuce and cabbage from farms at the market gates in Cotonou and Parakou using high performance liquid chromatography (HPLC) analysis techniques. These residues were also monitored on samples directly from farms (on-farm sampling) for 14 days post-treatment. Potential factors such as photolysis and hydrolysis involved in λ-cyhalothrin degradation were also screened. Results revealed that the level of λ-cyhalothrin residue concentrations in lettuce from Houeyiho decreased from 4.2 mg/kg on Day 1 to about 0.2 mg/kg on Day 7. On Day 9, analyzed lettuces were all λ-cyhalothrin free. In contrast, even 14 days after treatment of cabbage from Bawera (Parakou), we still recorded the presence of λ-cyhalothrin residues in analyzed samples. For samples from market gates, λ-cyhalothrin residues were found in lettuce from two markets out of the nine surveyed in Cotonou. Interestingly, none of these contaminated samples had residues above the maximum residue limit for lettuce (MRL = 0.5 mg/kg). Similarly, in Parakou, samples from all five surveyed vegetable markets were contaminated with λ-cyhalothrin residues at concentrations below the MRL for cabbage (MRL = 0.2 mg/kg). We conclude that λ-cyhalothrin residues in lettuce and cabbage from farms and markets in Parakou and Cotonou are within the MRL, and hence are relatively safe for consumption.


Assuntos
Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Inseticidas/análise , Resíduos de Praguicidas/análise , Agricultura , Benin , Brassica/metabolismo , Cromatografia Líquida de Alta Pressão , Lactuca/metabolismo , Nitrilas , Piretrinas/análise , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA