Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Front Microbiol ; 15: 1363158, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846573

RESUMO

A total of 1,348 endophytic fungal strains were isolated from Ferula ovina, F. galbaniflua, and F. persica. They included Eurotiales (16 species), Pleosporales (11 species), Botryosphaeriales (1 species), Cladosporiales (2 species), Helotiales (6 species), Hypocreales (31 species), Sordariales (7 species), Glomerellales (2 species), and Polyporales (1 species). F. ovina had the richest species composition of endophytic fungi, and the endophytic fungi were most abundant in their roots compared to shoots. Chao, Margalef, Shannon, Simpson, Berger-Parker, Menhinick, and Camargo indices showed that F. ovina roots had the most endophytic fungal species. The frequency distribution of fungal species isolated from Ferula spp. fell into the log-series model, and F. ovina roots had the highest Fisher alpha. The dominance indices showed that there are no dominant species in the endophytic fungal community isolated from Ferula spp., indicating community stability. Evenness values were 0.69, 0.90, 0.94, and 0.57 for endophytic fungi isolated from F. ovina roots, F. ovina shoots, F. galbaniflua roots, and F. persica roots, respectively, indicating a species distribution that tends toward evenness. The fungal species community isolated from each of F. ovina roots, F. ovina shoots, F. galbaniflua roots, and F. persica roots was a diverse species group originating from a homogeneous habitat. Their distribution followed a log-normal distribution, suggesting that the interactions of numerous independent environmental factors multiplicatively control species abundances. Principal component analysis showed that the highest species diversity and dominance were observed in the endophytic fungal community isolated from F. ovina and F. persica roots, respectively.

2.
Front Microbiol ; 15: 1366264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841070

RESUMO

Shiitake (Lentinula edodes) is one of the most widely grown and consumed mushroom species worldwide. They are a potential source of food and medicine because they are rich in nutrients and contain various minerals, vitamins, essential macro- and micronutrients, and bioactive compounds. The reuse of agricultural and industrial residues is crucial from an ecological and economic perspective. In this study, the running length (RL) of L. edodes cultured on 64 substrate compositions obtained from different ratios of bagasse (B), wheat bran (WB), and beech sawdust (BS) was recorded at intervals of 5 days after cultivation until the 40th day. Multilayer perceptron-genetic algorithm (MLP-GA), multiple linear regression, stepwise regression, principal component regression, ordinary least squares regression, and partial least squares regression were used to predict and optimize the RL and running rate (RR) of L. edodes. The statistical values showed higher prediction accuracies of the MLP-GA models (92% and 97%, respectively) compared with those of the regression models (52% and 71%, respectively) for RL and RR. The high degree of fit between the forecasted and actual values of the RL and RR of L. edodes confirmed the superior performance of the developed MLP-GA models. An optimization analysis on the established MLP-GA models showed that a substrate containing 15.1% B, 45.1% WB, and 10.16% BS and a running time of 28 days and 10 h could result in the maximum L. edodes RL (10.69 cm). Moreover, the highest RR of L. edodes (0.44 cm d-1) could be obtained by a substrate containing 30.7% B, 90.4% WB, and 0.0% BS. MLP-GA was observed to be an effective method for predicting and consequently selecting the best substrate composition for the maximal RL and RR of L. edodes.

3.
J Cardiovasc Thorac Res ; 16(1): 49-54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584664

RESUMO

Introduction: Since there is a bi-directional interaction between hypertension and depression, we aimed to evaluate the effects of citalopram administration in the management of hypertension. Methods: A randomized clinical trial was conducted on 72 patients with concomitant depression and hypertension. The intervention group (n=41) received citalopram 20 mg daily plus anti-hypertensive standard treatment, while the control group (n=31) received only the standard treatment. The study's primary endpoint was in-office blood pressure (BP) measurement at baseline and home BP monitoring in the first and second months after entering the study. Results: There were no significant differences in baseline systolic BP (163.3±19.6 vs.164.2±20.3 mm Hg; P=0.910) and diastolic BP (94.5±13.8 vs. 88.2±14.4; P=0.071). After one month, diastolic BP (82.7±11.7 vs. 77.09±12.2; P=0.023) was significantly higher in the control group compared to the intervention group. Two months after the intervention, systolic BP (133.8±16.5 vs. 124.5±12.4; P=0.009) and diastolic BP (80.7±10.3 vs. 73.7±9.7; P=0.002) were significantly decreased in the intervention group compared to the control group. Conclusion: This study supported the beneficial effects of citalopram in lowering BP in patients with concomitant depression and hypertension.

4.
Heliyon ; 10(7): e28666, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590881

RESUMO

Fungal pathogen "Neoscytalidium novaehollandiae" is the causal agent of trunk canker in mulberry trees. Mulberry is considered as most valuable tree for landscaping in Tehran. Here in, for the first time, chitosan nanoparticles (CSNPs) were used to inhibit canker disease causal agent of mulberry. For this purpose, CSNPs were synthesized with a yield of 86%, and after characterization of the synthesized nanoparticles, the growth inhibition rate of fungus (GI%) was evaluated. The results of in vitro assays showed that the concentration of 1500 ppm significantly (P ≤ 0.05) decreased the radial growth of the fungus in comparison with control. For in vivo experiments, 2-year-old branches from healthy randomly selected mulberry trees in the landscape, were inoculated artificially in the laboratory with mycelial plugs from a 7-day-old culture of fungus. The infected branches were then treated with 500, 1000, and 1500 ppm of CSNPs. The results indicated that the disease severity (DS%) in all the treatments and the control plants increased over time. However, the slope of the changes in DS was less in CSNPs treated compared to control. This effect was concentration dependent so that no disease progress was observed at 1500 ppm of CSNPs. The findings indicate the effectiveness of CSNPs in control of canker disease of mulberry caused by N. novaehollandiae.

6.
Arch Microbiol ; 206(3): 120, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38396230

RESUMO

Apple (Malus domestica Borkh) is one of the most consumed and nutritious fruits. Iran is one of the main producers of the apple in the world. Diplodia bulgarica is the major causal agent of apple tree decline in Iran. Biological control is a nature-friendly approach to plant disease management. Trichoderma zelobreve was isolated from apple trees infected with Diplodia bulgarica in West Azarbaijan province of Iran. The results showed that T. zelobreve strongly inhibited the colony growth of D. bulgarica. In vivo assay on detached branches of apple tree cv. Golden Delicious using T. zelobreve mycelial plug showed that canker length/stem length (CL/SL) and canker perimeter/stem perimeter (CP/SP) indices decreased by 76 and 69%, respectively, 21 days after inoculation. Additionally, wettable powder formulation (WPF) containing the antagonistic fungus "T. zelobreve" decreased CL and CP/SP by 75 and 67%, respectively, 6 months after inoculation. Moreover, canker progress curves and the area under the disease progress curve (AUDPC) supported these findings. The growth temperatures of the antagonist and pathogen were similar, indicating the adaptation of T. zelobreve for biocontrol of apple canker caused by D. bulgarica. The results also showed that T. zelobreve-based WPF stored at 25 °C assure excellent shelf life at least 4 months, allowing the bioproduct to be stored at room temperature, which is a great advantage and cost-effective option.


Assuntos
Ascomicetos , Malus , Trichoderma , Malus/microbiologia , Frutas/microbiologia
7.
Environ Sci Pollut Res Int ; 30(51): 110715-110724, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792187

RESUMO

Mycoremediation, a subset of bioremediation, is considered an advanced method to eliminate environmental contaminations. To identify tolerant fungi to copper contamination and study the related gene expression, sampling was carried out from the soil of "Sarcheshmeh Copper Mine," which is one of the biggest open-cast copper mines in the world. A total of 71 fungal isolates were obtained and purified. Afterward, the inhibitory effect of different concentrations (1000, 1500, 3500, 4000, and 5500 ppm) of copper sulfate on mycelial growth was evaluated. Results indicated that only 5500 ppm of copper sulfate inhibited fungal growth compared to the control. Based on the bioassay experiments, three isolates including S3-1, S3-21, and S1-7, which were able to grow on solid and broth medium containing 5500 ppm of copper sulfate at different pH conditions, were selected and identified using molecular approaches. Also, laccase and metallothionein gene expression has been assessed in these isolates. According to the molecular identification using ITS1-5.8S- ITS2 region, isolates S3-1 and S1-7 were identified as Pleurotus eryngii, and isolate S3-21 belonged to the genus Sarocladium. In addition, P. eryngii showed laccase gene expression reduction after 8 days of exposure to copper sulfate. While in the genus Sarocladium, it increased (almost 2 times) from 6 to 8 days. Besides, metallothionein gene expression has increased from 6 to 8 days of copper sulfate treatment compared to the control which reveals its role in copper tolerance of all studied isolates. In this study, Pleurotus eryngii and Sarocladium sp. are introduced as heavy metal tolerant fungi and the related gene expression to copper tolerance was studied for the first time in Iran.


Assuntos
Cobre , Pleurotus , Cobre/metabolismo , Sulfato de Cobre , Irã (Geográfico) , Lacase/metabolismo , Pleurotus/metabolismo , Metalotioneína/metabolismo , Fungos/metabolismo
8.
Fungal Genet Biol ; 169: 103828, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37657751

RESUMO

Despite the economic losses due to the walnut anthracnose, Ophiognomonia leptostyla is an orphan fungus with respect to genomic resources. In the present study, the transcriptome of O. leptostyla was assembled for the first time. RNA sequencing was conducted for the fungal mycelia grown in a liquid media, and the inoculated leaf samples of walnut with the fungal conidia sampled at 48, 96 and 144 h post inoculation (hpi). The completeness, correctness, and contiguity of the de novo transcriptome assemblies generated with Trinity, Oases, SOAPdenovo-Trans and Bridger were compared to identify a single superior reference assembly. In most of the assessment criteria including N50, Transrate score, number of ORFs with known description in gene bank, the percentage of reads mapped back to the transcript (RMBT), BUSCO score, Swiss-Prot coverage bin and RESM-EVAL score, the Bridger assembly was the superior and thus used as a reference for profiling the O. leptostyla transcriptome in liquid media vs. during walnut infection. The k-means clustering of transcripts resulted in four distinct transcription patterns across the three sampling time points. Most of the detected CAZy transcripts had elevated transcription at 96 hpi that is hypothetically concurrent with the start of intracellular growth. The in-silico analysis revealed 103 candidate effectors of which six were members of Necrosis and Ethylene Inducing Like Protein (NLP) gene family belonging to three distinct k-means clusters. This study provided a complex and temporal pattern of the CAZys and candidate effectors transcription during six days post O. leptostyla inoculation on walnut leaves, introducing a list of candidate virulence genes for validation in future studies.


Assuntos
Ascomicetos , Juglans , Transcriptoma/genética , Juglans/genética , Virulência/genética , Ascomicetos/genética
9.
PLoS One ; 18(2): e0281982, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36809254

RESUMO

Auricularia cornea Ehrenb (syn. A. polytricha) is a wood-decaying fungi known as black ear mushroom. Earlike gelatinous fruiting body distinguishes them from other fungi. Industrial wastes have the potential to be used as the basic substrate to produce mushrooms. Therefore, 16 substrate formulations were prepared from different ratios of beech (BS) and hornbeam sawdust (HS) supplemented with wheat (WB) and rice brans (RB). The pH and initial moisture content of substrate mixtures were adjusted to 6.5 and 70%, respectively. The comparison of in vitro growth characteristics of the fungal mycelia under the different temperatures (25, 28, and 30°C), and culture media [yeast extract agar (YEA), potato extract agar (PEA), malt extract agar (MEA), and also HS and BS extract agar media supplemented with maltose, dextrose, and fructose revealed that the highest mycelial growth rate (MGR; 7.5 mm/day) belonged to HS and BS extract agar media supplemented with three mentioned sugar at 28°C. In A. cornea spawn study, the substrate combination of BS (70%) + WB (30%) at 28°C and moisture contents of 75% displayed the highest mean MGR (9.3 mm/day) and lowest spawn run period (9.0 days). In the bag test, "BS (70%) + WB (30%)" was the best substrate displaying the shortest spawn run period (19.7 days), and the highest fresh sporophore yield (131.7 g/bag), biological efficiency (53.1%) and number of basidiocarp (9.0/bag) of A. cornea. Also, A. cornea cultivation was processed to model yield, biological efficiency (BE), spawn run period (SRP), days for pinhead formation (DPHF), days for the first harvest (DFFH), and total cultivation period (TCP) by multilayer perceptron-genetic algorithm (MLP-GA). MLP-GA (0.81-0.99) exhibited a higher predictive ability than stepwise regression (0.06-0.58). The forecasted values of the output variables were in good accordance with their observed ones corroborating the good competency of established MLP-GA models. MLP-GA modeling exhibited a powerful tool for forecasting and thus selecting the optimal substrate for maximum A. cornea production.


Assuntos
Agaricales , Ágar , Irã (Geográfico) , Meios de Cultura/química , Redes Neurais de Computação , Algoritmos
10.
Plants (Basel) ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501393

RESUMO

Geminivirus beet curly top Iran virus (BCTIV) is one of the main causal agents of the beet curly top disease in Iran and the newly established Becurtovirus genus type species. Although the biological features of known becurtoviruses are similar to those of curtoviruses, they only share a limited sequence identity, and no information is available on the function of their viral genes. In this work, we demonstrate that BCTIV V2, as the curtoviral V2, is also a local silencing suppressor in Nicotiana benthamiana and can delay the systemic silencing spreading, although it cannot block the cell-to-cell movement of the silencing signal to adjacent cells. BCTIV V2 shows the same subcellular localization as curtoviral V2, being detected in the nucleus and perinuclear region, and its ectopic expression from a PVX-derived vector also causes the induction of necrotic lesions in N. benthamiana, such as the ones produced during the HR, both at the local and systemic levels. The results from the infection of N. benthamiana with a V2 BCTIV mutant showed that V2 is required for systemic infection, but not for viral replication, in a local infection. Considering all these results, we can conclude that BCTIV V2 is a functional homologue of curtoviral V2 and plays a crucial role in viral pathogenicity and systemic movement.

11.
Sci Rep ; 12(1): 9337, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35665773

RESUMO

Neoscytalidium novaehollandiae is one of the most important pathogens on woody plants which has increasingly been reported as a pathogen in different hosts in recent years. The pine trees are widely cultured in many cities of Iran. In recent years, dieback symptoms were observed on Pinus eldarica trees in Tehran and Qazvin provinces. The aim of this study was to investigate the dieback causal agent on P. eldarica trees in Iran. The branches and cones of P. eldarica trees were sampled for fungal isolation. The morphological and molecular characterizations (ITS, LSU, and TEF1-α regions) identified N. novaehollandiae as a dieback causal agent. This is the first report of N. novaehollandiae disease of P. eldarica trees in Iran. Furthermore, disease severity was assayed on 19 urban forest trees under three different temperature and relative humidity (RHs) regimes. C regime (29 °C and 15% RH) displayed more disease severity on detached branches than B (24 °C and 80% RH) and A (19 °C and 35% RH) ones. This study presents the host range of this pathogen, and showed that these potential hosts are prone to this pathogen under high temperature and low humidity which urban forest trees experienced in recent decades.


Assuntos
Pinus , Árvores , Ascomicetos , Florestas , Irã (Geográfico)
12.
Front Microbiol ; 13: 906365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35722330

RESUMO

A characteristic trait of plants living in harsh environments is their association with fungal endophytes, which enable them to survive under extreme stress. Abiotic stress resistance in agro-ecosystems, particularly in arid and semi-arid regions, can be increased by inoculating these fungal endophytes on plants other than their original hosts. The present study is therefore focused on the possible role of three halotolerant endophytic fungi, i.e., Periconia macrospinosa, Neocamarosporium goegapense, and N. chichastianum, isolated from roots of salt lake plants growing in the central desert of Iran, in alleviating the adverse effects of salinity and drought stresses on barley under greenhouse conditions. To perform this experiment, a randomized block design was applied with three factors: fungi (four levels including three halotolerant endophytic species and control), salinity (three levels including 8, 12, and 16 dS/m), and drought (four levels including 100, 80, 60, 40 percent field capacity). All plants were measured for growth characteristics, chlorophyll concentration, proline content, and antioxidant enzyme activities. A three-way analysis of variance indicated that all three fungal endophytes, to varying extents, induced the barley plants' resistance to salinity and drought, and their combined effects. Additionally, we found that fungal endophytes were more effective when the barley plants were subjected to higher levels of salinity and drought. Under the stress of salinity and drought, a strong relationship between inoculation of fungal endophytes and enhancement of biomass, shoot length, chlorophyll concentration, proline content, and activity of catalase, peroxidase, and superoxide dismutase was indicated. We discussed that increased root growth, proline content, and antioxidant enzyme activity are the main physiological and biochemical mechanisms causing stress resistance in barley plants inoculated with endophytes. Our research findings illustrate that fungal endophytes have a substantial potential for increasing abiotic stress tolerance in barley plants, which can be applied in agricultural ecosystems.

14.
Sci Rep ; 11(1): 22646, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811444

RESUMO

To identify apple canker casual agents and evaluate their pathogenicity and virulence in apple production hubs including West Azarbaijan, Isfahan and Tehran provinces; samples were collected from symptomatic apple trees. Pathogenic isolates on the detached branches were identified as Cytospora cincta, Diplodia bulgarica, Neoscytalidium dimidiatum and Eutypa cf. lata. E. cf. lata was reported as a potential apple canker causal agent in Iran for the first time based on the pathogenicity test on the detached branches, whereas it caused no canker symptoms in apple trees until 6 months after inoculation. Currently, E. cf. lata seems to be adapted to a single city. C. cincta, D. bulgarica and N. dimidiatum caused canker symptoms in apple trees. "C. cincta" and also "C. cincta and N. dimidiatum" were the most widespread and aggressive apple canker species, respectively, associated with apple canker in Iran. Therefore, they are considered to be the main threat to apple production in Iran and should be carefully monitored. Disease progress curve, area under the disease progress curve and optimum temperatures were determined for mentioned species. It is concluded that the establishment of each species occurs in appropriate areas and times in terms of the optimum temperature for their growth.


Assuntos
Malus/microbiologia , Doenças das Plantas/microbiologia , Agricultura/métodos , Área Sob a Curva , Ascomicetos , Teorema de Bayes , Irã (Geográfico) , Modelos Estatísticos , Filogenia , Especificidade da Espécie , Temperatura , Virulência
15.
Front Plant Sci ; 12: 721016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490018

RESUMO

Harnessing plant-microbe interactions to advance crop resistance to pathogens could be a keystone in sustainable agriculture. The breeding of crops to maximize yield in intensive agriculture might have led to the loss of traits that are necessary for beneficial plant-soil feedback. In this study, we tested whether the soil microbiome can induce a stronger plant defense against root-lesion nematodes in ancestral genotypes of barley than in elite cultivars. Plants were grown in a sterile substrate with or without the inoculation of rhizosphere microbiomes, and Pratylenchus neglectus was inoculated to the roots. Unexpectedly, elite cultivars profited significantly more from the microbiome than ancestral genotypes, by the reduction of nematodes in roots and the increased shoot weight relative to control plants. The elite cultivars had higher microbial densities in the rhizosphere, which were correlated with root weight. The structure of the bacterial and fungal community of elite and ancestral genotypes differed, as compared by 16S rDNA or internal transcribed spacer amplicon profiles in denaturing gradient gel electrophoresis. The elite cultivars differed in responsiveness to the microbiome. For the most responsive cultivars Beysehir and Jolgeh, the strong microbe-induced suppression of nematodes coincided with the strongest microbe-dependent increase in transcripts of salicylic acid-regulated defense genes after nematode invasion, while the jasmonate-regulated genes LOX2 and AOS were downregulated in roots with the inoculated microbiome. The microbe-triggered modulation of defense gene expression differed significantly between elite and ancestral genotypes of barley. Soil microbiomes conditioned by maize roots suppressed the nematodes in elite cultivars, while the corresponding bulk soil microbiome did not. In conclusion, cultivars Beysehir and Jolgeh harbor the genetic background for a positive plant-microbiome feedback. Exploiting these traits in breeding for responsiveness to beneficial soil microbiomes, accompanied by soil biome management for compatible plant-microbe interactions, will support low-input agriculture and sustainability.

17.
Sci Rep ; 11(1): 9317, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927238

RESUMO

The responses of rhizosphere bacterial communities of Streptomyces (SS14 and IT20 stains) treated-pepper plants following inoculation by Phytophthora capsici (PC) was investigated using Illumina MiSeq sequencing. Distinct modulation of the bacteriome composition was found for PC samples with the highest relative abundance (RA) of Chitinophaga (22 ± 0.03%). The RA of several bacterial operational taxonomic units (OTUs) was affected and caused changes in alpha and beta-diversity measures. In IT20, the RA of Cyanobacteria was enriched compared to SS14 (72%) and control samples (47%). Phylotypes belonging to Devosia, Promicromonospora, Kribbella, Microbacterium, Amylocolatopsis, and Pseudomonas genera in the rhizosphere were positively responding against the pathogen. Our findings show that the phosphate solubilizing strain IT20 has higher microbial community responders than the melanin-producing strain SS14. Also, positive interactions were identified by comparing bacterial community profiles between treatments that might allow designing synthetic bio-inoculants to solve agronomic problems in an eco-friendly way.


Assuntos
Microbiota , Controle Biológico de Vetores , Phytophthora/fisiologia , Rizosfera , Streptomyces/fisiologia , Antibiose , Capsicum , Microbiologia do Solo
18.
Plant Methods ; 17(1): 13, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33546685

RESUMO

BACKGROUND: Paclitaxel is a well-known chemotherapeutic agent widely applied as a therapy for various types of cancers. In vitro culture of Corylus avellana has been named as a promising and low-cost strategy for paclitaxel production. Fungal elicitors have been reported as an impressive strategy for improving paclitaxel biosynthesis in cell suspension culture (CSC) of C. avellana. The objectives of this research were to forecast and optimize growth and paclitaxel biosynthesis based on four input variables including cell extract (CE) and culture filtrate (CF) concentration levels, elicitor adding day and CSC harvesting time in C. avellana cell culture, as a case study, using general regression neural network-fruit fly optimization algorithm (GRNN-FOA) via data mining approach for the first time. RESULTS: GRNN-FOA models (0.88-0.97) showed the superior prediction performances as compared to regression models (0.57-0.86). Comparative analysis of multilayer perceptron-genetic algorithm (MLP-GA) and GRNN-FOA showed very slight difference between two models for dry weight (DW), intracellular and extracellular paclitaxel in testing subset, the unseen data. However, MLP-GA was slightly more accurate as compared to GRNN-FOA for total paclitaxel and extracellular paclitaxel portion in testing subset. The slight difference was observed in maximum growth and paclitaxel biosynthesis optimized by FOA and GA. The optimization analysis using FOA on developed GRNN-FOA models showed that optimal CE [4.29% (v/v)] and CF [5.38% (v/v)] concentration levels, elicitor adding day (17) and harvesting time (88 h and 19 min) can lead to highest paclitaxel biosynthesis (372.89 µg l-1). CONCLUSIONS: Great accordance between the predicted and observed values of DW, intracellular, extracellular and total yield of paclitaxel, and also extracellular paclitaxel portion support excellent performance of developed GRNN-FOA models. Overall, GRNN-FOA as new mathematical tool may pave the way for forecasting and optimizing secondary metabolite production in plant in vitro culture.

19.
Plant Physiol Biochem ; 160: 225-238, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33517220

RESUMO

Abiotic stresses are among the most damaging and ever-increasing threats to crop production worldwide. Utilizing extreme-habitat-adapted symbiotic microorganisms is a well-known strategy to mitigate the destructive effects of abiotic stresses on agricultural products. Here, we show the effects of the inoculation of halotolerant endophytic fungi recovered from desert plants on drought and salinity stress tolerance in two model agricultural plants A Periconia and two Neocamarosporium species were selected for this study after an in vitro halotolerant assay. Then, a random block design with three factors including fungi, salinity, and drought treatments was used to investigate the ability of these endophytes to induce stress resistance in tomato and cucumber plants. Physiological markers including proline content and activities of superoxide dismutase, catalase and peroxidase enzymes; as well as growth parameters and chlorophyll contents were assessed in all model plants. Fungal symbiosis increased chlorophyll concentration and plant growth, under all levels of salinity and drought stress. In model plants associated with P. macrospinosa significant increase in proline content and antioxidant enzymatic activities was observed under all levels of the salinity and drought stresses compared to the endophyte-free plants, while plants associated with the two Neocamarosporium species, indicated significant increasing proline content and antioxidant enzymatic activities only in high levels of the salinity and drought stresses. Our findings provide novel insights into the eco-physiological mechanisms of halotolerant fungal endophyte-mediated drought and salinity stress tolerance in cucumber and tomato plants, which signify the prospective applications of arid and saline habitat adapted endophytes in agricultural systems.


Assuntos
Produtos Agrícolas/fisiologia , Secas , Endófitos/fisiologia , Salinidade , Estresse Fisiológico , Adaptação Fisiológica , Produtos Agrícolas/microbiologia , Clima Desértico
20.
Physiol Mol Biol Plants ; 27(12): 2695-2708, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35035130

RESUMO

Plants synthesize a variety of metabolites in response to biotic elicitors. To comprehend how the digested cell wall of Piriformospora indica affects the response of ROS burst, antioxidant enzymes, amino acids profiling, and phenylpropanoid compounds such as lignans, phenolic acids, and flavonoids in Linum album hairy roots; we accomplished a time-course analysis of metabolite production and enzyme activities in response to CDCW and evaluated the metabolic profiles. The results confirms that CDCW accelerates the H2O2 burst and increases SOD and GPX activity in hairy roots. The HPLC analysis of metabolic profiles shows that the H2O2 burst shifts the amino acids, especially Phe and Tyr, fluxes toward a pool of lignans, phenolic acids, and flavonoids through alterations in the behavior of the necessary enzymes of the phenylpropanoid pathway. CDCW changes PAL, CCR, CAD, and PLR gene expression and transiently induces PTOX and 6MPROX as the main-specific products of PAL and PLR genes expression. The production of phenolic acids (e.g., cinnamic, coumaric, caffeic, and salicylic acid) and flavonoids (e.g., catechin, diosmin, kaempferol, luteolin, naringenin, daidzein, and myricetin) show different behaviors in response to CDCW. In conclusion, our observations show that CDCW elicitation can generate H2O2 molecules in L. album hairy roots and consequently changes physiological, biochemical, and molecular responses such as antioxidant system and the specific active compounds such as lignans. Quantification of metabolic contents in response to CDCW suggests enzyme and non-enzyme defense mechanisms play a crucial role in L. album hairy root adaptation to CDCW. A summary revealed that the correlation between H2O2 generation and L. album hairy root defense system under CDCW. Increase of H2O2 generation led plant to response against oxidative conditions. SOD, and GPX modulated H2O2 content, Phe, and Tyr shifted to the phenylpropanoid compounds as a precursor of PAL and TAL enzyme, the predominant phenylpropanoid compounds controlled oxidative conditions, and the other amino acids responsible for amino acid synthesis and development stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA