Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Biochar ; 4(1): 33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673519

RESUMO

Nanoparticles are abundant in the subsurface, soil, streams, and water bodies, and are often a critical control on elemental speciation, transport and cycling in the natural environment. This review provides an overview of pyrolyzed biomass-derived nanoparticles (PBNPs), their surface properties and reactivity towards aqueous species. We focus specifically on biochar-derived nanoparticles and activated carbon-derived nanoparticles which fall under our classification of PBNPs. Activated carbon-iron (nano)composites are included in some instances where there are significant gaps in literature because of their environmental relevance. Increased use of activated carbon, along with a resurgence in the manufacture and application of biochar for water treatment and soil amendment, has generated significant concerns about the mobility and toxicity of PBNPs derived from the bulk material in environmental applications. Recent examples are discussed to highlight current progress in understanding the influence of PBNPs on contaminant transport, followed by a critical discussion of gaps and future research directions.

3.
Sci Rep ; 10(1): 19007, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149170

RESUMO

Biochar (BC) and magnetite (Fe3O4) nanoparticles (MNP) have both received considerable recent attention in part due to their potential use in water treatment. While both are effective independently in the removal of a range of anionic metals from aqueous solution, the efficacy of these materials is reduced considerably at neutral pH due to decreased metal adsorption and MNP aggregation. In addition to synthetic metal oxide-biochar composites for use in treatment and remediation technologies, aggregates may also occur in nature when pyrolytic carbon is deposited in soils. In this study, we tested whether magnetite synthesized in the presence of biochar leads to increased removal efficiency of hexavalent chromium, Cr(VI), at the mildly acidic to neutral pH values characteristic of most natural and contaminated aqueous environments. To do so, magnetite nanoparticles and biochar produced from ground willow were synthesized to form composites (MNP-BC). Batch studies showed that MNP-BC markedly enhanced both adsorption and reduction of Cr(VI) from aqueous solution at acidic to neutral pH as compared to MNP and BC separately, suggesting a strong synergetic effect of hybridizing Fe3O4 with BC. Mechanistically, the Cr(VI) removal processes occurred through both adsorption and intraparticle diffusion followed by reduction to Cr(III). Synchrotron-based X-ray absorption spectroscopy analyses confirmed that Cr(VI) was reduced at the surface of MNP-BC, with electrons derived directly from both biochar and magnetite at low pH, while at near-neutral pH, biochar increased Cr(VI) reduction by inhibiting MNP aggregation. Extended X-ray absorption fine structure fitting results confirmed that the Cr(III) precipitates consist of Cr(OH)3 and chromite (Cr2FeO4) nanoparticles. Our results demonstrate that MNP-BC composites have great potential as a material for the treatment of chromate-containing aqueous solutions across a wide range of pH values, and provide information valuable broadly relevant to soils and sediments that contain biochar.

4.
J Hazard Mater ; 368: 578-583, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30711706

RESUMO

Municipal solid waste conversion into biofuels via gasification is one of the latest technologies to divert waste from landfills. The byproduct of the process is a carbonaceous material, which is often tainted with polycyclic aromatic hydrocarbons (PAH) such as naphthalene that can leach into the environment and have toxic effects on aquatic organisms. In this paper, we present a novel method to address the issue of leachable naphthalene in a carbonaceous waste produced from a gasification process, using a magnetic sorbent. The sorbent was fabricated by the coprecipitation of iron oxide nanoparticles on an organophilic clay under atmospheric conditions. The characterization results show that the intercalated nanoparticles are predominantly magnetite with a diameter of 15-20 nm, and increase the clay specific surface area from 0.4 to 17 m2 g-1. Toxicity characteristic leaching procedure results indicate that the magnetic composite has a high naphthalene inhibition efficiency comparable to that of the original clay. As opposed to the clay alone, the magnetic hybrid can be separated from the carbonaceous waste with a magnet, regenerated by heat treatment, and reused without compromising its naphthalene removal efficiency. Thus, these composites may provide a cost-effective method to curtail leaching of PAH from contaminated carbonaceous waste.

5.
Environ Sci Technol ; 52(22): 13057-13067, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30339395

RESUMO

Biochar has been touted as a promising sorbent for the removal of inorganic contaminants, such as uranium (U), from water. However, the molecular-scale mechanisms of aqueous U(VI) species adsorption to biochar remain poorly understood. In this study, two approaches, grounded in equilibrium thermodynamics, were employed to investigate the U(VI) adsorption mechanisms: (1) batch U(VI) adsorption experiments coupled to surface complexation modeling (SCM) and (2) isothermal titration calorimetry (ITC), supported by synchrotron-based X-ray absorption spectroscopy (XAS) analyses. The biochars tested have considerable proton buffering capacity and most strongly adsorb U(VI) between approximately pH 4 and 6. FT-IR and XPS studies, along with XAS analyses, show that U(VI) adsorption occurs primarily at the proton-active carboxyl (-COOH) and phenolic hydroxyl (-OH) functional groups on the biochar surface. The SCM approach is able to predict U(VI) adsorption behavior across a wide range of pH and at varying initial U(VI) and biochar concentrations, and U adsorption is strongly influenced by aqueous U(VI) speciation. Supporting ITC measurements indicate that the calculated enthalpies of protonation reactions of the studied biochar, as well as the adsorption of U(VI), are consistent with anionic oxygen ligands and are indicative of both inner- and outer-sphere complexation. Our results provide new insights into the modes of U(VI) adsorption by biochar and more generally improve our understanding of its potential to remove radionuclides from contaminated waters.


Assuntos
Carvão Vegetal , Urânio , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier
6.
ACS Appl Mater Interfaces ; 8(14): 9483-9, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26998641

RESUMO

It has been long known that the electrical properties of cellulose are greatly influenced by adsorption of water vapor. Incorporating conductive nanofillers in a cellulose matrix is an example of an approach to tailor their characteristics for use in electronics and sensing devices. In this work, we introduce two new nanocomposites comprising carbon nanotubes (CNTs) and conventional or electrosterically stabilized nanocrystalline celluloses matrices. While conventional nanocrystalline cellulose (NCC) consists of a rigid crystalline backbone, electrosterically stabilized cellulose (ENCC) is composed of a rigid crystalline backbone with carboxylated polymers protruding from both ends. By tuning CNT loading, we can tailor a CNT/NCC composite with minimal electrical sensitivity to the ambient relative humidity, despite the fact that the composite has a high moisture uptake. The expected decrease in CNT conductivity upon water vapor adsorption, due to electron donation, is counterbalanced by an increase in the conductivity of NCC due to proton hopping at an optimum CNT loading (1-2%). Contrary to the CNT/NCC composite, a CNT/ENCC composite at 1% CNT loading shows insulating behavior for relative humidities up to 75%, after which the composite becomes conductive. This interesting behavior can be ascribed to the low moisture uptake of ENCC at low and moderate relative humidities due to the limited number of hydroxyl groups and hydrogen bond formation between carboxyl groups on ENCC, which endow ENCC with limited water molecule adsorption sites.

7.
ACS Appl Mater Interfaces ; 7(21): 11301-8, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25950624

RESUMO

Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

8.
J Colloid Interface Sci ; 432: 151-7, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25086389

RESUMO

Nanoparticles are widely used as drug carriers, texturizing agents, fat replacers, and reinforcing inclusions. Because of a growing interest in non-renewable materials, much research has focused on nanocellulose derivatives, which are biodegradable, biocompatible, and easily synthesized. Among nanocellulose derivatives, nanocrystalline cellulose (NCC) has been known for half a century, but its utility is limited because its colloidal stability is challenged by added salt. On the other hand, electrosterically stabilized nanocrystalline cellulose (ENCC) has recently been observed to have superior colloidal stability. Here, we use electrokinetic-sonic-amplitude (ESA) and acoustic attenuation spectroscopy to assess NCC and ENCC ζ-potentials and sizes over wide ranges of pH and ionic strength. The results attest to a soft, porous layer of dicarboxylic cellulose (DCC) polymers that expands and collapses with ionic strength, electrosterically stabilizing ENCC dispersions at ionic strengths up to at least 200mmol L(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA