RESUMO
Landfill treatment of municipal solid waste incineration fly ash (MSWI FA) after stabilization is the primary disposal technology. However, only few studies have assessed the stability of MSWI-FA-chelated products in different landfill scenarios. In this study, three commonly used dithiocarbamate (DTC)-based organic chelating agents (CAs) (TS-300, SDD, and PD) were selected to stabilize heavy metals (HMs) in MSWI FA. In addition, the leaching toxicity and environmental risks of the chelated products were assessed in different disposal environments. The results demonstrate that the HM leaching concentrations of the chelated products met the concentration limits of the sanitary landfill standard (GB16889-2008; mixed Landfill Scenario) for the three CAs at a low additive level (0.3 %). However, in the compartmentalized landfill scenario (the leaching agent was acid rain), the leaching of HMs from the chelated products met the standard when TS-300, SDD, and PD were added at 1.5 %, 6.0 %, and 8.0 %, respectively. Additionally, Pb, Zn, and Cd in the chelated products from the 1.5 %-TS-300 and 6.0 %-SDD groups met the leaching limits within the pH ranges 6-12 and 7-12, 6-12 and 7-12, and 8-12 and 8-12, respectively. This was primarily due of TS-300's multiple DTC groups forming stable chain-like macromolecular chelates with Pb. However, although the environmental risks associated with Pb, Zn, and Cd in the initial (0-d) chelated products of the 1.5 %-TS-300 and 6.0 %-SDD groups were minimized to low and negligible levels, there was a significant increase in the leaching of the three HMs after 28 d of storage. Therefore, with appropriate CA addition, although the leaching concentration of HMs in the chelated product may comply with the GB16889-2008 standards, it remains essential to consider its environmental risk, particularly in highly acidic or alkaline environments and during prolonged storage of the product.
RESUMO
The present research focused on evaluating the role of waste fishbone hydroxyapatite (FB-HAP) in stabilizing heavy metals, particularly Pb and Zn, in incineration fly ash (IFA). Bones were collected from various fish species and processed for batch experiments. A commercial apatite product (Apatite II™) was also obtained for a comparative analysis. The experiments were performed at fishbone/fly ash ratios of 0.0 (control group) and 1:10 (by weight), settling times of 6, 12, 24, and 672 h (28 days), and W/S ratios of 1.0 and 1.5 mL/g. The highest Pb removal efficiency reached 86.39% at 28 days settling periods, when the FB-HAP dose was only 10% at W/S 1.5 mL/g. FB-HAP was found noticeably more effective (approximately 1.5 to 2 times) than Apatite II™, particularly at shorter settling periods. Stabilization of Zn was efficient at longer settling period (28 days) using FB-HAP. The highest stabilization rate of Zn was 62.67% at W/S 1.0 mL/g. The results indicated that settling time and W/S ratio were the most important factors to enhance the stabilization of Pb and Zn in IFA. Utilization of waste fishbone is expected to be a low-cost and eco-friendly technology.
Assuntos
Metais Pesados , Eliminação de Resíduos , Carbono , Cinza de Carvão , Durapatita , Incineração , Chumbo , Metais Pesados/análise , Material Particulado , Resíduos Sólidos , ZincoRESUMO
In Japan, approximately 64% of municipal solid waste incineration bottom ash (MSWI BA) is landfilled. Because landfills in Japan are operated without capping, the landfill body is directly exposed to climatic events. Increased frequency of heavy rain is predicted to affect the chemical stabilization of bottom ash (BA) landfill, as rainwater seeps into and interacts with landfill components. This study examined the effect of normal rainfall (15 mm/h) and heavy rainfall (25, 50, and 100 mm/h) events on the leaching behavior of ions (Cl-, Na+, K+, and Ca2+) and total organic carbon (TOC) in BA (<10 mm particle size) using a percolation column test. The results showed the decreased leaching of leachate components after heavy rainfall and increased leaching after normal rainfall. In addition, the pH fluctuated around 11-12 after heavy rainfall but decreased to 7-9 after normal rainfall. The carbonation of the leachate and BA layers appears to be the main factor in lowering the pH value. Changes in the TOC and ion concentrations can be explained by dissolution, dilution, and the contact time of water molecules and BA particles. The data showed that the cumulative TOC and ion release rates were not affected by heavy rain intensities. The release rate of leachate components during normal rainfall was higher than that in heavy rainfall in all the scenarios. Significant correlations were found between the leachate components (TOC, Cl-, Na+, K+, and Ca2+ concentrations) and rainfall variation.
Assuntos
Metais Pesados/análise , Eliminação de Resíduos , Carbono , Cinza de Carvão , Incineração , Japão , Chuva , Resíduos Sólidos , Instalações de Eliminação de ResíduosRESUMO
In the present research, municipal solid waste incineration (MSWI) bottom ash (BA) residues from three incinerators (N, K, and R) in Japan were collected for hydrogen gas generation purpose. The samples were split into four particle size fractions: (1) d≤0.6, (2) 0.6≤d≤1.0, (3) 1.0≤d≤2.0, and (4) 2.0≤d≤4.75mm for the characterization of metal aluminum, the relationship between the present metal aluminum and hydrogen gas production, and the influence of external metal aluminum on the enhancement of hydrogen gas. The batch experiments were performed for each BA fraction under agitated (200rpm) and non-agitated conditions at 40°C for 20days. The highest amount of hydrogen gas (cumulative) was collected under agitation condition that was 39.4, 10.0, and 8.4 L/kg of dry ash for N2, R2, and K2 (all fraction 2), respectively. To take the benefit of the BA high alkalinity (with initial pH over 12), 0.1 and 1g of household aluminum foil were added to the fractions 2 and 3. A Significantly larger amount of hydrogen gas was collected from each test. For 0.1g of aluminum foil, the cumulative amount of gas was in the range of 62 to 78 L/kg of dry ash and for 1g of aluminum foil the cumulative amount of hydrogen was in the range of 119-126 L/kg of dry ash. This indicated that the hydrogen gas yield was significantly a function of supplementary aluminum and the intrinsic alkaline environment of the BA residues rather than ash source or particle size.
Assuntos
Cinza de Carvão , Eliminação de Resíduos , Resíduos Sólidos , Alumínio/análise , Alumínio/química , Hidrogênio , Incineração , Japão , Metais/análise , Metais/química , ÁguaRESUMO
This research focused on the mineral phase transformation under varied ignition conditions with the objective of estimating loss-on-ignition (LOI) parameter in municipal solid waste incineration (MSWI) fly ash residues. LOI is commonly used to measure the volatile species, unburned carbon and moisture in the solid materials. There are criteria for LOI measurement in some research fields, while there is no standard protocol for LOI measurement in MSWI fly ash. Using thermogravimetry technique, the ignition condition candidates were proposed at 440/700/900°C for 1 and 2h. Based on X-ray diffractometry results, obvious mineral phase transformation occurred as a function of ignition temperature variation rather than ignition time. Until 440°C, only some minor phases disappeared comparing with the original state. Significant mineral phase transformations of major phases (Ca- and Cl-based minerals) occurred between 440 and 700°C. The mineral phase transformation and the occurrence of newly-formed phases were determined not only by the ignition condition but also by the content of the co-existing components. Mineral phase components rarely changed when ignition temperature rose from 700 to 900°C. Consequently, in order to prevent critical damages to the original mineralogical composition of fly ash, the lowest ignition temperature (440°C) for 2h was suggested as an ideal measurement condition of LOI in MSWI fly ash.
Assuntos
Cinza de Carvão/química , Incineração/métodos , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Carbono/química , Temperatura Alta , Minerais/química , Termogravimetria , Difração de Raios XRESUMO
This study investigated changes in bottom ash morphology and mineralogy under lab-scale quenching conditions. The main purpose was to clarify the mechanisms behind the formation of the quench product/layer around bottom ash particles. In the experiments, the unquenched bottom ashes were heated to 300°C for 1h, and were quenched by warm water (65°C) with different simulated conditions. After having filtered and dried, the ashes were analyzed by a combination of methodologies namely, particle size distribution analysis, intact particle and thin-section observation, X-ray diffractometry, and scanning electron microscope with energy dispersive X-ray spectroscopy. The results indicated that after quenching, the morphology and mineralogy of the bottom ash changed significantly. The freshly quenched bottom ash was dominated by a quench product that was characterized by amorphous and microcrystalline calcium-silicate-hydrate (CSH) phases. This product also enclosed tiny minerals, glasses, ceramics, metals, and organic materials. The dominant mineral phases produced by quenching process and detected by XRD were calcite, Friedel's salt, hydrocalumite and portlandite. The formation of quench product was controlled by the fine fraction of the bottom ash (particle size <0.425mm). From the observations, a conceptual model of the ash-water reactions and formation of the quench product in the bottom ash was proposed.
Assuntos
Incineração/métodos , Modelos Teóricos , Resíduos Sólidos , Incineração/estatística & dados numéricosRESUMO
Municipal solid waste incineration (MSWI) bottom-ash products possess qualifications to be utilized in cement production. However, the instant use of bottom ash is inhibited by a number of factors, among which the chlorine (Cl) content is always strictly restricted. In this paper, the unquenched MSWI bottom ash was used as the experimental substance, and the influences of thermal treatment and cooling methods on the content and existence of Cl in the ash residues were investigated. The characterization of the MSWI bottom-ash samples examined by utilizing X-ray diffraction, optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy. The experimental results show that as a function of thermal treatment, the reduction rate of Cl is slight below 15.0%, which is relatively low compared with water washing process. Different cooling methods had impacts on the existing forms of Cl. It was understood that most of Cl existed in the glass phase if the bottom ash was air cooled. Contrarily in case of water-quenched bottom ash, Cl could also be accumulated in the newly-formed quench products as chloride salts or hydrate substances such as Friedel's salt.
Assuntos
Cinza de Carvão , Eliminação de Resíduos , Carbonato de Cálcio/química , Cloro/análise , Cloro/química , Cinza de Carvão/análise , Cinza de Carvão/química , Temperatura Alta , Quartzo/química , Difração de Raios XRESUMO
Municipal solid waste incineration bottom ash (MSWI-BA) glass serves as a matrix of assorted bottom ash (BA) compounds. Deterioration of the BA glass phases is quite important as they regulate the distribution of a series of toxic elements. This paper studied landfilled MSWI-BA samples from the mineralogical and geochemical viewpoint to understand the deterioration behavior of the BA glass phases as well as mechanisms involved. Bulk analysis by PXRD as well as micro-scale analysis by optical microscopy and SEM/EDX was conducted for such purposes. The results revealed that dissolution of the BA glass phases has resulted in a deterioration layer of 10(0)-10(2)µm thickness after years of disposal. This rapid weathering process is highly relevant to the specific glass characteristics and solution pH. The BA glass phases with more embedded compounds and cracks/fissures tend to be more vulnerable. Moreover, the generally alkaline pH in ash deposit favors a rapid disruption of the glass phase. The weathering products are mainly gel phases (including Al-Si gel, Ca-Al-Si gel, Fe-Al-Si gel etc.) with iron oxide/hydroxide as accessory products. Breakdown of the BA glass phases triggers chemical evolution of the embedded compounds. Based on all the findings above, a model is proposed to illustrate a general evolution trend for the landfilled MSWI-BA glass phases.
Assuntos
Vidro/química , Incineração , Resíduos Industriais , Vidro/análise , Resíduos Industriais/análise , Instalações de Eliminação de ResíduosRESUMO
After the March 11, 2011 Tohoku earthquake and Fukushima I Nuclear Power Plant accident, incineration was initially adopted as an effective technique for the treatment of post-disaster wastes. Accordingly, considerable amounts of radioactively contaminated residues were immediately generated through incineration. The level of radioactivity associated with radiocesium in the incineration ash residues (bottom ash and fly ash) became significantly high (several thousand to 100,000 Bq/kg) as a result of this treatment. In order to understand the modes of occurrence of radiocesium, bottom ash products were synthesized through combusting of refuse-derived fuel (RDF) with stable Cs salts in a pilot incinerator. Microscopic and microanalytical (SEM-EDX) techniques were applied and the following Cs categories were identified: low and high concentrations in the matrix glass, low-level partitioning into some newly-formed silicate minerals, partitioning into metal-sulfide compounds, and occurring in newly-formed Cs-rich minerals. These categories that are essentially silicate-bound are the most dominant forms in large and medium size bottom ash particles. It is expected that these achievements provide solutions to the immobilization of radiocesium in the incineration ash products contaminated by Fukushima nuclear accident.
Assuntos
Césio/análise , Incineração , Radioisótopos de Césio/análise , Cinza de Carvão/análise , Acidente Nuclear de Fukushima , Tamanho da Partícula , Resíduos Radioativos/análise , Espectrometria por Raios XRESUMO
Municipal solid waste incineration (MSWI) is widely used in Japan, through which large amount of incineration residues are produced. The recycle/reuse of the incineration residues is troubled by many factors. This paper studied the MSWI bottom ash with the principal focus on Cl. Both bulk analysis and microanalysis methods have been carried out. The bulk analysis disclosed a particle-size dependent pattern of the Cl content in the bottom ash and the insoluble Cl is essentially in the form of Friedel's salt (3CaO·Al(2)O(3)·CaCl(2)·10H(2)O). The microanalysis revealed that Cl preferentially exists in the quench phase of the individual bottom ash particle. Since Friedel's salt and the other quench products are thermally unstable, a series of thermal treatments were carried out to decompose such Cl-bearing phases. The experimental results showed the total Cl content in the MSWI bottom ash was reduced by 55.46% after a 4-h heating process at 1000°C. The removal of the soluble Cl (originally as alkali salts) by the thermal process was found to be more effective. However, the insoluble Cl content in the heated sample was barely lowered owing to the formation of calcium chlorocalumite (11CaO·7Al(2)O(3)·CaCl(2)) in the course of heating.
Assuntos
Cloro/análise , Cinza de Carvão/análise , Incineração , Eliminação de Resíduos , Temperatura Alta , Japão , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Material Particulado/análise , Espectrometria de Fluorescência , Espectrometria por Raios X , TemperaturaRESUMO
UNLABELLED: Natural weathering processes are significant mechanisms that noticeably affect the fundamental nature of incineration ash residues. To provide a greater understanding of these processes, a MSWI (mono)landfill site in the north east of the US was selected as the target for systematic investigation of the natural weathering of bottom ash residues. Samples of various ages were collected from locations A (1 yr), B (10 yrs), C (13-14 yrs) and D (20 yrs) of the landfill in 2009. We investigated the phase transformation of the collected bottom ash particles, neoformation processes as well as the behavior and distribution of certain heavy metals (Cu, Pb, Zn, Ni, and Cr) in the neoformed phases using optical microscopy, SEM-EDX, and bulk examinations. KEY FINDINGS: at the preliminary stage, the waste metallic particles (Al, Fe, and Cu) and unstable minerals such as lime, portlandite, ettringite and hydrocalumite convert to oxide and hydroxide (hydrate) phases, calcite, alumina gel and gypsum. At the intermediate stage, the decomposition of melt products including magnetite spinels and metallic inclusions is triggered due to the partial dissolution of the melt glass. At the longer time horizon it is possible to track the breakdown of the glass phase, the extensive formation of calcite and anhydrite, Al-hydrates and more stable Fe-hydrates all through the older ash deposits. Among the dominant secondary phases, we propose the following order based on their direct metal uptake capacity: Fe-hydrates>Al-hydrates>>calcite. Calcite was found to be the least effective phase for the direct sorption of heavy metals. Based on overall findings, a model is proposed that demonstrates the general trend of ash weathering in the landfill.
Assuntos
Cidades , Incineração , Eliminação de Resíduos/métodos , Resíduos/análise , Metais Pesados/análise , Microscopia Eletrônica de Varredura , New Hampshire , Espectrometria por Raios X , Difração de Raios XRESUMO
Municipal solid waste incineration (MSWI) bottom ash contains a considerable amount of Fe-rich constituents. The behaviors of these constituents, such as dissolution and precipitation, are quite important as they regulate the distribution of a series of ions between the liquid (percolated fluid) and solid (ash deposit) phases. This paper studied both fresh and weathered MSWI bottom ash from the mineralogical and geochemical viewpoint by utilizing optical microscopy, scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), and powder X-ray diffraction. The analysis results revealed that for the fresh bottom ash, iron preferentially existed in the chemical forms of spinel group (mainly Fe(3)O(4), and a series of Al- or Ti- substituted varieties), metallic inclusions (including Fe-P, Fe-S, Fe-Cu-Pb), hematite (Fe(2)O(3)) and unburned iron pieces. In the 1-20 years weathered bottom ash collected from a landfill site, interconversions among these Fe-rich constituents were identified. Consequently, numerous secondary products were developed, including goethite (α-FeOOH), lepidocrocite (γ-FeOOH), hematite, magnetite, wustite (FeO), Fe-Si-rich gel phase. Of all these transformation products, hydrous iron oxides were the most common secondary minerals. Quantitative chemical analysis of these secondary products by SEM/EDX disclosed a strong association between the newly formed hydrous iron oxides and heavy metals (e.g. Pb, Zn, Ni, and Cu). The results of this study suggest that the processes of natural weathering and secondary mineralization contribute to reduction of the potential risks of heavy metals to the surrounding environments.
Assuntos
Incineração , Compostos de Ferro/análise , Compostos de Ferro/síntese química , Resíduos/análise , AdsorçãoRESUMO
Municipal solid waste incineration (MSWI) bottom ash contains a considerable amount of heavy metals. The occurrence and uneven distribution of these heavy metals in bottom ash can increase the complexity of such residues in terms of long-term behavior upon landfilling or recycling. Bottom ashes sampled from three stoker-type incinerators in Japan were analyzed in this paper. This study presents detailed information on the mineralogical characterization of bottom ash constituents and the weathering behavior of these constituents by means of optical microscopy and scanning electron microscopy. It was revealed that bottom ash mainly consists of assorted silicate-based glass phases (48-54 wt% of ash) and mineral phases including melilites, pseudowollastonite, spinels, and metallic inclusions (Fe-P, Fe-S, Fe-Cu, Cu-Sn, Cu-Zn, Cu-S, and Cu-Pb dominated phases), as melt products formed during the incineration process. The compounds embedded in the glass matrix, e.g. spinels and metallic inclusions, played the most important role in concentration of heavy metals (Pb, Zn, Cu, Cr, Mn, Ni, etc.). Other phases such as refractory minerals and ceramics, frequently found in ash, were of less significance in terms of their influence on the involvement of heavy metals. Analysis of lab-scale artificially weathered and 10-year landfilled bottom ash samples revealed that secondary mineralization/alteration of the bottom ash constituents principally carbonation and glass evolution substantially decreased the potential risk of the heavy metals to the surrounding environment.
Assuntos
Incineração , Metais Pesados/química , Eliminação de Resíduos , Japão , Microscopia Eletrônica de VarreduraRESUMO
MSW slag materials derived from four pyrolysis melting plants in Japan were studied from the viewpoint of petrology in order to discriminate the glass and mineral phases and to propose a petrogenetic model for the formation process of molten slag. Slag material is composed of two major components: melt and refractory products. The melt products that formed during the melting process comprise silicate glass, and a suite of minerals as major constituents. The silicate glass is essentially composed of low and high silica glass members (typically 30% and 50% of SiO(2), respectively), from which minerals such as spinels, melilite, pseudowollastonite, and metallic inclusions have been precipitated. The refractory products consist mainly of pieces of metals, minerals and lithic fragments that survived through the melting process. Investigations demonstrated that the low silica melts (higher Ca and Al contents) were produced at upper levels of high temperature combustion chamber HTCC, at narrower temperature ranges (1250-1350 degrees C), while the high silica melts formed at broader temperature ranges (1250-1450 degrees C), at the lower levels of HTCC. The recent temperature ranges were estimated by using CaOAl(2)O(3)SiO(2) (CAS) ternary liquidus diagram that are reasonably consistent with those reported for a typical combustor. It was also understood that the samples with a higher CaO/SiO(2) ratio (>0.74-0.75) have undergone improved melting, incipient crystallization of minerals, and extensive homogenization. The combined mineralogical and geochemical examinations provided evidence to accept the concept of stepwise generation of different melt phases within the HTCC. The petrogenesis of the melt products may therefore be described as a two-phase melt system with immiscible characteristics that have been successively generated during the melting process of MSW.
Assuntos
Materiais de Construção/análise , Temperatura Alta , Eliminação de Resíduos , Temperatura de Transição , Compostos de Cálcio , Precipitação Química , Vidro , Japão , Minerais , Fotomicrografia , Quartzo , SilicatosRESUMO
Slag products derived from the pyrolysis/melting and plasma/melting treatment of municipal solid waste (MSW) in Japan were examined for the characterization study of heavy metal-bearing phases using petrographic techniques. Detailed microscopic observations revealed that the shapes of heavy metal-rich inclusions are generally spherical to semi-spherical and their sizes range from submicron to scarcely large size spheres (over 100 microm). The experiments (both optical microscopy and electron probe microanalysis) indicated that Fe and Cu participate in mutual substitution and different proportions, and form mainly two-phase Fe-Cu alloys that bound in the silicate glass. This alloy characterizes the composition of more than 80% of the metal-rich inclusions. Other metals and non-metals (such as Pb, Ni, Sb, Sn, P, Si, Al and S) with variable amounts and uneven distributions are also incorporated in the Fe-Cu alloy. In average, the bulk concentration of heavy metals in samples from pyrolysis/melting type is almost six times greater than samples treated under plasma/arc processing. The observations also confirmed that slag from pyrolysis origin contains remarkably higher concentration of metallic inclusions than slag from plasma treatment. In the latter, the metallic compounds are separately tapped from molten slag during the melting treatment that might lead to the generation of safer slag product for end users from environmental viewpoint.
Assuntos
Resíduos Industriais/análise , Metais Pesados/análise , Eliminação de Resíduos/métodos , Recuperação e Remediação Ambiental/métodos , Congelamento , Temperatura Alta , Metais Pesados/isolamento & purificação , Tamanho da PartículaRESUMO
This paper provides the results of studies on the characteristics of novel material derived from pyrolysis/melting treatment of municipal solid waste in Japan. Slag products from pyrolysis/melting plants were sampled for the purpose of detailed phase analysis and characterization of heavy metal-containing phases using optical microscopy, electron probe microanalysis (EPMA), XRF and XRD. The study revealed that the slag material contains glass (over 95%), oxide and silicate minerals (spinel, melilite, pseudowollastonite), as well as individual metallic inclusions as the major constituents. A distinct chemical diversity was discovered in the interstitial glass in terms of silica content defined as low and high silica glass end members. Elevated concentrations of Zn, Cr, Cu, Pb and Ba were recorded in the bulk composition. Cu, Pb and Ba behave as incompatible elements since they have been markedly characterized as part of polymetallic alloys and insignificantly sulfides in the form of spherical metallic inclusions associated with tracer amounts of other elements such as Sb, Sn, Ni, Zn, Al, P and Si. In contrast, an appreciable amount of Zn is retained by zinc-rich end members of spinel and partially by melilite and silica glass. Chromium exhibits similar behavior, and is considerably held by Cr-rich spinel. The intense incorporation of Zn and Cr into spinel indicates the very effective enrichment of these two elements into phases more environmentally resistant than glass. There was no evidence, however, that Cu and Pb enter into the structure of the crystalline silicates or oxides that may lead to their easier leachability upon exposure to the environment.