Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947350

RESUMO

Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form has not been fully established. Here, we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the embryonic hindbrain transiently contains alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even molecular characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium that represent prospective rhombomere r2/r3 (possibly including r1), r4, and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual rhombomeres requires the resolution of mixed transcription and chromatin states.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Peixe-Zebra/genética , Estudos Prospectivos , Proteínas de Peixe-Zebra/metabolismo , Rombencéfalo , Cromatina/metabolismo
2.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36747868

RESUMO

Rhombomeres serve to position neural progenitors in the embryonic hindbrain, thereby ensuring appropriate neural circuit formation, but the molecular identities of individual rhombomeres and the mechanism whereby they form have not been fully established. Here we apply scMultiome analysis in zebrafish to molecularly resolve all rhombomeres for the first time. We find that rhombomeres become molecularly distinct between 10hpf (end of gastrulation) and 13hpf (early segmentation). While the mature hindbrain consists of alternating odd- versus even-type rhombomeres, our scMultiome analyses do not detect extensive odd versus even characteristics in the early hindbrain. Instead, we find that each rhombomere displays a unique gene expression and chromatin profile. Prior to the appearance of distinct rhombomeres, we detect three hindbrain progenitor clusters (PHPDs) that correlate with the earliest visually observed segments in the hindbrain primordium and that represent prospective rhombomere r2/r3 (possibly including r1), r4 and r5/r6, respectively. We further find that the PHPDs form in response to Fgf and RA morphogens and that individual PHPD cells co-express markers of multiple mature rhombomeres. We propose that the PHPDs contain mixed-identity progenitors and that their subdivision into individual mature rhombomeres requires resolution of mixed transcription and chromatin states.

3.
J Biochem ; 173(1): 53-63, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36270274

RESUMO

The Nudt family has been identified as enzymes performing Coenzyme A to 3'5'-ADP + 4'-phospho pantetheine catalysis. The members of this family have been shown to be particularly involved in lipid metabolism, while their involvement in gene regulation through regulating transcription or mRNA metabolism has also been suggested. Here, we focused on peroxisomal NUDT7, possessing enzymatic activity similar to that of its paralog, peroxisomal NUDT19, which is involved in mRNA degradation. No reports have been published about the Nudt family in zebrafish. Our transcriptomic data showed that the Nudt family members are highly expressed around zygotic gene activation (ZGA) in developing zebrafish embryos. Therefore, we confirmed the computational prediction that the products of the nudt7 gene in zebrafish were localized in the peroxisome and highly expressed in early embryogenesis. The depletion of nudt7 genes by the CRISPR/Cas9 system did not affect development; however, it decreased the rate of transcription in ZGA. In addition, H3K27ac ChIP-seq analysis demonstrated that this decrease in transcription was correlated with the genome-wide decrease of H3K27ac level. This study suggests that peroxisomal Nudt7 functions in regulating transcription in ZGA via formation of the H3K27ac domain in active chromatin.


Assuntos
Transcriptoma , Peixe-Zebra , Animais , Peixe-Zebra/genética , Cromatina , Genoma , Perfilação da Expressão Gênica
4.
Dev Biol ; 459(2): 161-180, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31862379

RESUMO

Animal embryogenesis is initiated by maternal factors, but zygotic genome activation (ZGA) shifts regulatory control to the embryo during blastula stages. ZGA is thought to be mediated by maternally provided transcription factors (TFs), but few such TFs have been identified in vertebrates. Here we report that NF-Y and TALE TFs bind zebrafish genomic elements associated with developmental control genes already at ZGA. In particular, co-regulation by NF-Y and TALE is associated with broadly acting genes involved in transcriptional control, while regulation by either NF-Y or TALE defines genes in specific developmental processes, such that NF-Y controls a cilia gene expression program while TALE controls expression of hox genes. We also demonstrate that NF-Y and TALE-occupied genomic elements function as enhancers during embryogenesis. We conclude that combinatorial use of NF-Y and TALE at developmental enhancers permits the establishment of distinct gene expression programs at zebrafish ZGA.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Expressão Gênica , Genoma , Proteínas de Homeodomínio/metabolismo , Ativação Transcricional , Peixe-Zebra/embriologia , Zigoto/metabolismo , Animais , Cílios/genética , Desenvolvimento Embrionário/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Masculino , Proteínas de Peixe-Zebra
5.
Neural Dev ; 14(1): 5, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30813944

RESUMO

BACKGROUND: Functioning of the adult nervous system depends on the establishment of neural circuits during embryogenesis. In vertebrates, neurons that make up motor circuits form in distinct domains along the dorsoventral axis of the neural tube. Each domain is characterized by a unique combination of transcription factors (TFs) that promote a specific fate, while repressing fates of adjacent domains. The prdm12 TF is required for the expression of eng1b and the generation of V1 interneurons in the p1 domain, but the details of its function remain unclear. METHODS: We used CRISPR/Cas9 to generate the first germline mutants for prdm12 and employed this resource, together with classical luciferase reporter assays and co-immunoprecipitation experiments, to study prdm12b function in zebrafish. We also generated germline mutants for bhlhe22 and nkx6.1 to examine how these TFs act with prdm12b to control p1 formation. RESULTS: We find that prdm12b mutants lack eng1b expression in the p1 domain and also possess an abnormal touch-evoked escape response. Using luciferase reporter assays, we demonstrate that Prdm12b acts as a transcriptional repressor. We also show that the Bhlhe22 TF binds via the Prdm12b zinc finger domain to form a complex. However, bhlhe22 mutants display normal eng1b expression in the p1 domain. While prdm12 has been proposed to promote p1 fates by repressing expression of the nkx6.1 TF, we do not observe an expansion of the nkx6.1 domain upon loss of prdm12b function, nor is eng1b expression restored upon simultaneous loss of prdm12b and nkx6.1. CONCLUSIONS: We conclude that prdm12b germline mutations produce a phenotype that is indistinguishable from that of morpholino-mediated loss of prdm12 function. In terms of prdm12b function, our results indicate that Prdm12b acts as transcriptional repressor and interacts with both EHMT2/G9a and Bhlhe22. However, bhlhe22 function is not required for eng1b expression in vivo, perhaps indicating that other bhlh genes can compensate during embryogenesis. Lastly, we do not find evidence for nkx6.1 and prdm12b acting as a repressive pair in formation of the p1 domain - suggesting that prdm12b is not solely required to repress non-p1 fates, but is specifically needed to promote p1 fates.


Assuntos
Padronização Corporal/fisiologia , Sistemas CRISPR-Cas , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Locomoção/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/embriologia , Células de Renshaw , Rombencéfalo/embriologia , Medula Espinal/embriologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/fisiologia , Padronização Corporal/genética , Proteínas de Ligação a DNA/genética , Mutação em Linhagem Germinativa , Células HEK293 , Humanos , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
Neural Dev ; 13(1): 13, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29945667

RESUMO

BACKGROUND: Previous work aimed at understanding the gene regulatory networks (GRNs) governing caudal hindbrain formation identified morphogens such as Retinoic Acid (RA) and Fibroblast growth factors (FGFs), as well as transcription factors like hoxb1b, hoxb1a, hnf1ba, and valentino as being required for rhombomere (r) r4-r6 formation in zebrafish. Considering that the caudal hindbrain is relatively complex - for instance, unique sets of neurons are formed in each rhombomere segment - it is likely that additional essential genes remain to be identified and integrated into the caudal hindbrain GRN. METHODS: By taking advantage of gene expression data available in the Zebrafish Information Network (ZFIN), we identified 84 uncharacterized genes that are expressed in r4-r6. We selected a representative set of 22 genes and assayed their expression patterns in hoxb1b, hoxb1a, hnf1b, and valentino mutants with the goal of positioning them in the caudal hindbrain GRN. We also investigated the effects of RA and FGF on the expression of this gene set. To examine whether these genes are necessary for r4-r6 development, we analyzed germline mutants for six of the genes (gas6, gbx1, sall4, eglf6, celf2, and greb1l) for defects in hindbrain development. RESULTS: Our results reveal that r4 gene expression is unaffected by the individual loss of hoxb1b, hoxb1a or RA, but is under the combinatorial regulation of RA together with hoxb1b. In contrast, r5/r6 gene expression is dependent on RA, FGF, hnf1ba and valentino - as individual loss of these factors abolishes r5/r6 gene expression. Our analysis of six mutant lines did not reveal rhombomere or neuronal defects, but transcriptome analysis of one line (gas6 mutant) identified expression changes for genes involved in several developmental processes - suggesting that these genes may have subtle roles in hindbrain development. CONCLUSION: We conclude that r4-r6 formation is relatively robust, such that very few genes are absolutely required for this process. However, there are mechanistic differences in r4 versus r5/r6, such that no single factor is required for r4 development while several genes are individually required for r5/r6 formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Rombencéfalo/metabolismo , Animais , Animais Geneticamente Modificados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , Embrião não Mamífero , Inibidores Enzimáticos/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Morfogênese , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Pirróis/farmacologia , RNA Mensageiro/administração & dosagem , Rombencéfalo/crescimento & desenvolvimento , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Elife ; 72018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29911973

RESUMO

TALE factors are broadly expressed embryonically and known to function in complexes with transcription factors (TFs) like Hox proteins at gastrula/segmentation stages, but it is unclear if such generally expressed factors act by the same mechanism throughout embryogenesis. We identify a TALE-dependent gene regulatory network (GRN) required for anterior development and detect TALE occupancy associated with this GRN throughout embryogenesis. At blastula stages, we uncover a novel functional mode for TALE factors, where they occupy genomic DECA motifs with nearby NF-Y sites. We demonstrate that TALE and NF-Y form complexes and regulate chromatin state at genes of this GRN. At segmentation stages, GRN-associated TALE occupancy expands to include HEXA motifs near PBX:HOX sites. Hence, TALE factors control a key GRN, but utilize distinct DNA motifs and protein partners at different stages - a strategy that may also explain their oncogenic potential and may be employed by other broadly expressed TFs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Essenciais/genética , Proteínas de Homeodomínio/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Blástula/embriologia , Blástula/metabolismo , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Ligação Proteica , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
8.
BMC Dev Biol ; 18(1): 6, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544468

RESUMO

BACKGROUND: Signaling cascades, such as the extracellular signal-regulated kinase (ERK) pathway, play vital roles in early vertebrate development. Signals through these pathways are initiated by a growth factor or hormone, are transduced through a kinase cascade, and result in the expression of specific downstream genes that promote cellular proliferation, growth, or differentiation. Tight regulation of these signals is provided by positive or negative modulators at varying levels in the pathway, and is required for proper development and function. Two members of the dual-specificity phosphatase (Dusp) family, dusp6 and dusp2, are believed to be negative regulators of the ERK pathway and are expressed in both embryonic and adult zebrafish, but their specific roles in embryogenesis remain to be fully understood. RESULTS: Using CRISPR/Cas9 genome editing technology, we generated zebrafish lines harboring germ line deletions in dusp6 and dusp2. We do not detect any overt defects in dusp2 mutants, but we find that approximately 50% of offspring from homozygous dusp6 mutants do not proceed through embryonic development. These embryos are fertilized, but are unable to proceed past the first zygotic mitosis and stall at the 1-cell stage for several hours before dying by 10 h post fertilization. We demonstrate that dusp6 is expressed in gonads of both male and female zebrafish, suggesting that loss of dusp6 causes defects in germ cell production. Notably, the 50% of homozygous dusp6 mutants that complete the first cell division appear to progress through embryogenesis normally and give rise to fertile adults. CONCLUSIONS: The fact that offspring of homozygous dusp6 mutants stall prior to activation of the zygotic genome, suggests that loss of dusp6 affects gametogenesis and/or parentally-directed early development. Further, since only approximately 50% of homozygous dusp6 mutants are affected, we postulate that ERK signaling is tightly regulated and that dusp6 is required to keep ERK signaling within a range that is permissive for proper embryogenesis. Lastly, since dusp6 is expressed throughout zebrafish embryogenesis, but dusp6 mutants do not exhibit defects after the first cell division, it is possible that other regulators of the ERK pathway compensate for loss of dusp6 at later stages.


Assuntos
Fosfatase 6 de Especificidade Dupla/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Alelos , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Divisão Celular/efeitos dos fármacos , Fosfatase 6 de Especificidade Dupla/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Gastrulação/efeitos dos fármacos , Edição de Genes , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Homozigoto , Masculino , Morfolinos/farmacologia , Mutação/genética , Ovário/metabolismo , Fenótipo , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/metabolismo , Testículo/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
9.
Int J Dev Biol ; 62(11-12): 767-774, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30604846

RESUMO

Hox proteins have long been known to function as transcriptional regulators during development of the vertebrate hindbrain. In particular, these factors are thought to play key roles in assigning distinct fates to the rhombomere segments arising in the embryonic hindbrain. However, it remains uncertain exactly how the Hox proteins fit into the regulatory networks controlling hindbrain formation. For instance, it is unclear if Hox proteins fulfill similar roles in different rhombomeres and if they are absolutely required for all aspects of each rhombomere fate. Recent advances in the discovery, characterization and functional analysis of hindbrain gene regulatory networks is now allowing us to revisit these types of questions. In this review we focus on recent data on the formation of caudal rhombomeres in vertebrates, with a specific focus on zebrafish, to derive an up-to-date view of the role for Hox proteins in the regulation of hindbrain development.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Genes Homeobox , Rombencéfalo/metabolismo , Peixe-Zebra/genética , Animais , Peixe-Zebra/metabolismo
10.
Neural Dev ; 10: 24, 2015 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-26499851

RESUMO

The embryonic vertebrate neural tube is divided along its dorsoventral (DV) axis into eleven molecularly discrete progenitor domains. Each of these domains gives rise to distinct neuronal cell types; the ventral-most six domains contribute to motor circuits, while the five dorsal domains contribute to sensory circuits. Following the initial neurogenesis step, these domains also generate glial cell types-either astrocytes or oligodendrocytes. This DV pattern is initiated by two morphogens-Sonic Hedgehog released from notochord and floor plate and Bone Morphogenetic Protein produced in the roof plate-that act in concentration gradients to induce expression of genes along the DV axis. Subsequently, these DV-restricted genes cooperate to define progenitor domains and to control neuronal cell fate specification and differentiation in each domain. Many genes involved in this process have been identified, but significant gaps remain in our understanding of the underlying genetic program. Here we review recent work identifying members of the Prdm gene family as novel regulators of DV patterning in the neural tube. Many Prdm proteins regulate transcription by controlling histone modifications (either via intrinsic histone methyltransferase activity, or by recruiting histone modifying enzymes). Prdm genes are expressed in spatially restricted domains along the DV axis of the neural tube and play important roles in the specification of progenitor domains, as well as in the subsequent differentiation of motor neurons and various types of interneurons. Strikingly, Prdm proteins appear to function by binding to, and modulating the activity of, other transcription factors (particularly bHLH proteins). The identity of key transcription factors in DV patterning of the neural tube has been elucidated previously (e.g. the nkx, bHLH and pax families), but it now appears that an additional family is also required and that it acts in a potentially novel manner.


Assuntos
Padronização Corporal/fisiologia , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Tecido Nervoso/genética , Sistema Nervoso/embriologia , Animais , Humanos , Vertebrados
11.
Methods Mol Biol ; 1196: 133-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25151162

RESUMO

The zebrafish model organism is well suited to study the role of specific genes, such as hox genes, in embryogenesis and organ function. The ability to modulate the activity of hox genes in living zebrafish embryos represents a cornerstone of such functional analyses. In this chapter we outline the basic methodology for nucleic acid injections into 1-2-cell-stage zebrafish embryos. We also report variations in this method to allow injection of mRNA, DNA, and antisense oligonucleotides to either overexpress, knock down, or knock out specific genes in zebrafish embryos.


Assuntos
Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Embrião não Mamífero/metabolismo , Feminino , Expressão Gênica , Marcação de Genes , Vetores Genéticos , Masculino , Transgenes
12.
BMC Dev Biol ; 14: 25, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24902847

RESUMO

BACKGROUND: The developing vertebrate hindbrain is transiently segmented into rhombomeres by a process requiring Hox activity. Hox genes control specification of rhombomere fates, as well as the stereotypic differentiation of rhombomere-specific neuronal populations. Accordingly, germ line disruption of the paralog group 1 (PG1) Hox genes Hoxa1 and Hoxb1 causes defects in hindbrain segmentation and neuron formation in mice. However, antisense-mediated interference with zebrafish hoxb1a and hoxb1b (analogous to murine Hoxb1 and Hoxa1, respectively) produces phenotypes that are qualitatively and quantitatively distinct from those observed in the mouse. This suggests that PG1 Hox genes may have species-specific functions, or that anti-sense mediated interference may not completely inactivate Hox function in zebrafish. RESULTS: Using zinc finger and TALEN technologies, we disrupted hoxb1a and hoxb1b in the zebrafish germ line to establish mutant lines for each gene. We find that zebrafish hoxb1a germ line mutants have a more severe phenotype than reported for Hoxb1a antisense treatment. This phenotype is similar to that observed in Hoxb1 knock out mice, suggesting that Hoxb1/hoxb1a have the same function in both species. Zebrafish hoxb1b germ line mutants also have a more severe phenotype than reported for hoxb1b antisense treatment (e.g. in the effect on Mauthner neuron differentiation), but this phenotype differs from that observed in Hoxa1 knock out mice (e.g. in the specification of rhombomere 5 (r5) and r6), suggesting that Hoxa1/hoxb1b have species-specific activities. We also demonstrate that Hoxb1b regulates nucleosome organization at the hoxb1a promoter and that retinoic acid acts independently of hoxb1b to activate hoxb1a expression. CONCLUSIONS: We generated several novel germ line mutants for zebrafish hoxb1a and hoxb1b. Our analyses indicate that Hoxb1 and hoxb1a have comparable functions in zebrafish and mouse, suggesting a conserved function for these genes. In contrast, while Hoxa1 and hoxb1b share functions in the formation of r3 and r4, they differ with regards to r5 and r6, where Hoxa1 appears to control formation of r5, but not r6, in the mouse, whereas hoxb1b regulates formation of r6, but not r5, in zebrafish. Lastly, our data reveal independent regulation of hoxb1a expression by retinoic acid and Hoxb1b in zebrafish.


Assuntos
Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Diferenciação Celular/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Marcação de Genes/métodos , Mutação em Linhagem Germinativa , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Rombencéfalo/citologia , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
13.
Dev Biol ; 390(2): 247-60, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24631215

RESUMO

Proper functioning of the vertebrate central nervous system requires the precise positioning of many neuronal cell types. This positioning is established during early embryogenesis when gene regulatory networks pattern the neural tube along its anteroposterior and dorsoventral axes. Dorsoventral patterning of the embryonic neural tube gives rise to multiple progenitor cell domains that go on to differentiate unique classes of neurons and glia. While the genetic program is reasonably well understood for some lineages, such as ventrally derived motor neurons and glia, other lineages are much less characterized. Here we show that prdm12b, a member of the PR domain containing-family of transcriptional regulators, is expressed in the p1 progenitor domain of the zebrafish neural tube in response to Sonic Hedgehog signaling. We find that disruption of prdm12b function leads to dorsal expansion of nkx6.1 expression and loss of p1-derived eng1b-expressing V1 interneurons, while the adjacent p0 and p2 domains are unaffected. We also demonstrate that prdm12b-deficient fish exhibit an abnormal touch-evoked escape response with excessive body contractions and a prolonged response time, as well as an inability to coordinate swimming movements, thereby revealing a functional role for V1 interneurons in locomotor circuits. We conclude that prdm12b is required for V1 interneuron specification and that these neurons control swimming movements in zebrafish.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Hedgehog/metabolismo , Interneurônios/metabolismo , Tubo Neural/metabolismo , Transdução de Sinais/fisiologia , Natação/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Bromodesoxiuridina , Proteínas de Ligação a DNA/genética , Redes Reguladoras de Genes/genética , Imuno-Histoquímica , Hibridização In Situ , Oligonucleotídeos Antissenso/genética , Alcaloides de Veratrum , Peixe-Zebra/fisiologia , Proteínas de Peixe-Zebra/genética
14.
Dev Cell ; 28(2): 203-11, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24480644

RESUMO

Hox proteins form complexes with TALE cofactors from the Pbx and Prep/Meis families to control transcription, but it remains unclear how Hox:TALE complexes function. Examining a Hoxb1b:TALE complex that regulates zebrafish hoxb1a transcription, we find maternally deposited TALE proteins at the hoxb1a promoter already during blastula stages. These TALE factors recruit histone-modifying enzymes to promote an active chromatin profile at the hoxb1a promoter and also recruit RNA polymerase II (RNAPII) and P-TEFb. However, in the presence of TALE factors, RNAPII remains phosphorylated on serine 5 and hoxb1a transcription is inefficient. By gastrula stages, Hoxb1b binds together with TALE factors to the hoxb1a promoter. This triggers P-TEFb-mediated transitioning of RNAPII to the serine 2-phosphorylated form and efficient hoxb1a transcription. We conclude that TALE factors access promoters during early embryogenesis to poise them for activation but that Hox proteins are required to trigger efficient transcription.


Assuntos
Proteínas de Homeodomínio/metabolismo , Regiões Promotoras Genéticas , Ativação Transcricional , Proteínas de Peixe-Zebra/metabolismo , Animais , Blástula/metabolismo , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Fosforilação , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
15.
Dev Dyn ; 243(1): 4-15, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23765878

RESUMO

Hox genes encode transcription factors with important roles during embryogenesis and tissue differentiation. Genetic analyses initially demonstrated that interfering with Hox genes has profound effects on the specification of cell identity, suggesting that Hox proteins regulate very specific sets of target genes. However, subsequent biochemical analyses revealed that Hox proteins bind DNA with relatively low affinity and specificity. Furthermore, it became clear that a given Hox protein could activate or repress transcription, depending on the context. A resolution to these paradoxes presented itself with the discovery that Hox proteins do not function in isolation, but interact with other factors in complexes. The first such "cofactors" were members of the Extradenticle/Pbx and Homothorax/Meis/Prep families. However, the list of Hox-interacting proteins has continued to grow, suggesting that Hox complexes contain many more components than initially thought. Additionally, the activities of the various components and the exact mechanisms whereby they modulate the activity of the complex remain puzzling. Here, we review the various proteins known to participate in Hox complexes and discuss their likely functions. We also consider that Hox complexes of different compositions may have different activities and discuss mechanisms whereby Hox complexes may be switched between active and inactive states.


Assuntos
Genes Homeobox/genética , Transcrição Gênica/genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
PLoS One ; 8(5): e63175, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671670

RESUMO

Nucleosome organization at promoter regions plays an important role in regulating gene activity. Genome-wide studies in yeast, flies, worms, mammalian embryonic stem cells and transformed cell lines have found well-positioned nucleosomes flanking a nucleosome depleted region (NDR) at transcription start sites. This nucleosome arrangement depends on DNA sequence (cis-elements) as well as DNA binding factors and ATP-dependent chromatin modifiers (trans-factors). However, little is understood about how the nascent embryonic genome positions nucleosomes during development. This is particularly intriguing since the embryonic genome must undergo a broad reprogramming event upon fusion of sperm and oocyte. Using four stages of early embryonic zebrafish development, we map nucleosome positions at the promoter region of 37 zebrafish hox genes. We find that nucleosome arrangement at the hox promoters is a progressive process that takes place over several stages. At stages immediately after fertilization, nucleosomes appear to be largely disordered at hox promoter regions. At stages after activation of the embryonic genome, nucleosomes are detectable at hox promoters, with positions becoming more uniform and more highly occupied. Since the genomic sequence is invariant during embryogenesis, this progressive change in nucleosome arrangement suggests that trans-factors play an important role in organizing nucleosomes during embryogenesis. Separating hox genes into expressed and non-expressed groups shows that expressed promoters have better positioned and occupied nucleosomes, as well as distinct NDRs, than non-expressed promoters. Finally, by blocking the retinoic acid-signaling pathway, we disrupt early hox gene transcription, but observe no effect on nucleosome positions, suggesting that active hox transcription is not a driving force behind the arrangement of nucleosomes at the promoters of hox genes during early development.


Assuntos
Proteínas de Homeodomínio/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Família Multigênica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Sítio de Iniciação de Transcrição , Tretinoína/farmacologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
17.
Dev Dyn ; 241(6): 1125-32, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22499412

RESUMO

BACKGROUND: The zebrafish is well established as a model organism for the study of vertebrate embryogenesis, but transgenic lines enabling restricted gene expression are still lacking for many tissues. RESULTS: We first generated the hoxb1a(ß-globin):eGFP(um8) line that expresses eGFP in hindbrain rhombomere 4 (r4), as well as in facial motor neurons migrating caudally from r4. Second, we generated the hoxb1a(ß-globin) Gal4VP16(um60) line to express the exogenous Gal4VP16 transcription factor in r4. Lastly, we prepared the UAS(ß-actin):hoxa3a(um61) line where the hoxa3a gene, which is normally expressed in r5 and r6, is under control of Gal4-regulated UAS elements. Crossing the hoxb1a(ß-globin):Gal4VP16(um60) line to the UAS(ß-actin):hoxa3a(um61) line drives robust hoxa3a expression in r4. We find that transgenic expression of hoxa3a in r4 does not affect hoxb1a expression, but has variable effects on migration of facial motorneurons and formation of Mauthner neurons. While cases of somatic transgene silencing have been reported in zebrafish, we have not observed such silencing to date, possibly because of our efforts to minimize repetitive sequences in the transgenic constructs. CONCLUSION: We have generated three transgenic lines that will be useful for future studies by permitting the labeling of r4-derived cells, as well as by enabling r4-specific expression of various transgenes.


Assuntos
Actinas/metabolismo , Animais Geneticamente Modificados/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Fluorescência Verde/metabolismo , Rombencéfalo/embriologia , Transativadores/metabolismo , Transgenes/genética , Actinas/genética , Animais , Animais Geneticamente Modificados/metabolismo , Cruzamentos Genéticos , Primers do DNA/genética , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Hibridização In Situ , Microinjeções , Oligonucleotídeos/genética , Rombencéfalo/metabolismo , Transativadores/genética , Peixe-Zebra
18.
Dev Dyn ; 241(2): 315-26, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22275004

RESUMO

The complicated trajectory of facial motor neuron migration requires coordination of intrinsic signals and cues from the surrounding environment. Migration begins in rhombomere (r) 4 where facial motor neurons are born and proceeds in a caudal direction. Once facial motor neurons reach their target rhombomeres, they migrate laterally and radially from the ventral neural tube. In zebrafish, as facial motor neurons migrate through r5/r6, they pass near cells that express olig2, which encodes a bHLH transcription factor. In this study, we found that olig2 function is required for facial motor neurons to complete their caudal migration into r6 and r7 and form stereotypical clusters. Additionally, embryos that lack mafba function, in which facial motor neurons also fail to complete caudal migration, lack olig2 expression in r5 and r6. Our data raise the possibility that cells expressing olig2 are intermediate targets that help guide facial motor neuron migration.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal , Movimento Celular , Neurônios Motores/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Rombencéfalo/citologia , Rombencéfalo/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas do Tecido Nervoso/genética , Fator de Transcrição 2 de Oligodendrócitos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
19.
Dev Biol ; 358(2): 356-67, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21787765

RESUMO

Segmentation of the vertebrate hindbrain into multiple rhombomeres is essential for proper formation of the cerebellum, cranial nerves and cranial neural crest. Paralog group 1 (PG1) hox genes are expressed early in the caudal hindbrain and are required for rhombomere formation. Accordingly, loss of PG1 hox function disrupts development of caudal rhombomeres in model organisms and causes brainstem defects, associated with cognitive impairment, in humans. In spite of this important role for PG1 hox genes, transcriptional targets of PG1 proteins are not well characterized. Here we use ectopic expression together with embryonic dissection to identify novel targets of the zebrafish PG1 gene hoxb1b. Of 100 genes up-regulated by hoxb1b, 54 were examined and 25 were found to represent novel hoxb1b regulated hindbrain genes. The ppp1r14al gene was analyzed in greater detail and our results indicate that Hoxb1b is likely to directly regulate ppp1r14al expression in rhombomere 4. Furthermore, ppp1r14al is essential for establishment of the earliest hindbrain signaling-center in rhombomere 4 by regulating expression of fgf3.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Proteínas de Homeodomínio/genética , Fosfoproteínas Fosfatases/genética , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Sequência de Bases , Primers do DNA/genética , Fator 3 de Crescimento de Fibroblastos/antagonistas & inibidores , Fator 3 de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-beta Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/antagonistas & inibidores , Hibridização In Situ , Fator de Transcrição MafB/genética , Proteínas do Tecido Nervoso/genética , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Transcriptoma , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo
20.
Mol Cell Biol ; 30(13): 3176-86, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20421421

RESUMO

Knockdown of the Brg1 ATPase subunit of SWI/SNF chromatin remodeling enzymes in developing zebrafish caused stunted tail formation and altered sarcomeric actin organization, which phenocopies the loss of the microRNA processing enzyme Dicer, or the knockdown of myogenic microRNAs. Furthermore, myogenic microRNA expression and differentiation was blocked in Brg1 conditional myoblasts differentiated ex vivo. The binding of Brg1 upstream of myogenic microRNA sequences correlated with MyoD binding and accessible chromatin structure in satellite cells and myofibers, and it was required for chromatin accessibility and microRNA expression in a tissue culture model for myogenesis. The results implicate ATP-dependent chromatin remodelers in myogenic microRNA gene regulation.


Assuntos
Trifosfato de Adenosina/metabolismo , Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , DNA Helicases/metabolismo , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Cultivadas , DNA Helicases/genética , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mioblastos/citologia , Mioblastos/fisiologia , Proteínas Nucleares/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA