Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 21(1): 245, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730576

RESUMO

BACKGROUND: Several studies show that natural foods are a source of compounds with anticancer properties that affect the gut microbiota and its metabolites. In the present study, we investigate the effect of a delactosed buffalo milk whey by-product (DMW) on colorectal carcinogenesis. METHODS: The effect of DMW on colorectal carcinoma (CRC) was investigated in the established mouse model of azoxymethane (AOM)-induced colon carcinoma, which closely resembles the human clinical condition of CRC. The effect of DMW on CRC immortalized cell lines was also evaluated to further identify the antineoplastic mechanism of action. RESULTS: Pretreatment of AOM-treated mice with DMW significantly (P < 0.05) reduced the percentage of mice bearing both aberrant crypt foci with more than four crypts (which are early precancerous lesions that progress to CRC) and tumors. In addition, DMW completely counteracted the effect of AOM on protein expression of caspase-9, cleaved caspase-3 and poly ADP-ribose polymerase in colonic tissue. Administration of DMW alone (i.e. without AOM) resulted in changes in the composition of the gut microbiota, leading to enrichment or depletion of genera associated with health and disease, respectively. DMW was also able to restore AOM-induced changes in specific genera of the gut microbiota. Specifically, DMW reduced the genera Atopobiaceae, Ruminococcus 1 and Lachnospiraceae XPB1014 and increased the genera Parabacteroides and Candidatus Saccharimonas, which were increased and reduced, respectively, by AOM. Blood levels of butyric acid and cancer diagnostic markers (5-methylcytidine and glycerophosphocholine), which were increased by AOM treatment, were reduced by DMW. Furthermore, DMW exerted cytotoxic effects on two human CRC cell lines (HCT116 and HT29) and these effects were associated with the induction of apoptotic signaling. CONCLUSIONS: Our results suggest that DMW exerts chemopreventive effects and restores the gut microbiota in AOM-induced CRC, and induces cytotoxic effect on CRC cells. DMW could be an important dietary supplement to support a healthy gut microbiota and reduce the prevalence of CRC in humans. Video Abstract.


Assuntos
Neoplasias Colorretais , Soro do Leite , Humanos , Animais , Camundongos , Búfalos , Leite , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Azoximetano/toxicidade , Ácido Butírico
2.
Microorganisms ; 11(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37630538

RESUMO

A total of thirty-two aerobic spore former strains were isolated from intestinal samples of healthy children and analyzed for their hemolytic and antibiotic-resistant activities. Four strains selected as non-hemolytic and sensitive to all antibiotics recommended as relevant by regulatory agencies were short-listed and evaluated for their in silico and in vitro probiotic potentials. The four selected strains were assigned to the Bacillus velezensis (MV4 and MV11), B. subtilis (MV24), and Priestia megaterium (formerly Bacillus megaterium) (MV30) species. A genomic analysis indicated that MV4, MV11, and MV24 contained a homolog of the gene coding for the fibrinolytic enzyme nattokinase while only MV30 encoded a glutamic acid decarboxylase essential to synthesize the neurotransmitter GABA. All four strains contained gene clusters potentially coding for new antimicrobials, showed strong antioxidant activity, formed biofilm, and produced/secreted quorum-sensing peptides able to induce a cytoprotective stress response in a model of human intestinal (HT-29) cells. Altogether, genomic and physiological data indicate that the analyzed strains do not pose safety concerns and have in vitro probiotic potentials allowing us to propose their use as an alternative to antibiotics.

3.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446054

RESUMO

The development of efficient mucosal vaccines is strongly dependent on the use of appropriate vectors. Various biological systems or synthetic nanoparticles have been proposed to display and deliver antigens to mucosal surfaces. The Bacillus spore, a metabolically quiescent and extremely resistant cell, has also been proposed as a mucosal vaccine delivery system and shown able to conjugate the advantages of live and synthetic systems. Several antigens have been displayed on the spore by either recombinant or non-recombinant approaches, and antigen-specific immune responses have been observed in animals immunized by the oral or nasal route. Here we review the use of the bacterial spore as a mucosal vaccine vehicle focusing on the advantages and drawbacks of using the spore and of the recombinant vs. non-recombinant approach to display antigens on the spore surface. An overview of the immune responses induced by antigen-displaying spores so far tested in animals is presented and discussed.


Assuntos
Bacillus , Vacinas , Animais , Esporos Bacterianos/metabolismo , Bacillus subtilis/metabolismo , Vacinas/metabolismo , Sistemas de Liberação de Medicamentos , Bacillus/metabolismo , Antígenos/metabolismo , Proteínas de Bactérias/metabolismo
4.
Res Microbiol ; 174(6): 104030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36738815

RESUMO

Bacteria classified as Bacillus cereus sensu stricto cause two different type of gastrointestinal diseases associated with food poisoning. Outbreaks of this opportunistic pathogen are generally due to the resistance of its spores to heat, pH and desiccation that makes hard their complete inactivation from food products. B. cereus is commonly isolated from a variety of environments, including intestinal samples of infected and healthy people. We report the genomic and physiological characterization of MV19, a human intestinal strain closely related (ANI value of 98.81%) to the reference strain B. cereus ATCC 14579. MV19 cells were able to grow in a range of temperatures between 20 and 44 °C. At the optimal temperature the sporulation process was rapidly induced and mature spores efficiently released, however these appeared structurally and morphologically defective. At the sub-optimal growth temperature of 25 °C sporulation was slow and less efficient but a high total number of fully functional spores was produced. These results indicate that the reduced rapidity and efficiency of sporulation at 25 °C are compensated by a high quality and quantity of released spores, suggesting the relevance of different performances at different growth conditions for the adaptation of this bacterium to diverse environmental niches.


Assuntos
Bacillus cereus , Esporos Bacterianos , Humanos , Esporos Bacterianos/genética , Temperatura , Temperatura Alta
5.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499272

RESUMO

Spore formers are ubiquitous microorganisms commonly isolated from most environments, including the gastro-intestinal tract (GIT) of insects and animals. Spores ingested as food and water contaminants safely transit the stomach and reach the intestine, where some of them germinate and temporarily colonize that niche. In the lower part of the GIT, they re-sporulate and leave the body as spores, therefore passing through their entire life cycle in the animal body. In the intestine, both un-germinated spores and germination-derived cells interact with intestinal and immune cells and have health-beneficial effects, which include the production of useful compounds, protection against pathogenic microorganisms, contribution to the development of an efficient immune system and modulation of the gut microbial composition. We report a genomic and physiological characterization of SF106 and SF174, two aerobic spore former strains previously isolated from ileal biopsies of healthy human volunteers. SF106 and SF174 belong respectively to the B. subtilis and Alkalihalobacillus clausii (formerly Bacillus clausii) species, are unable to produce toxins or other metabolites with cytotoxic activity against cultured human cells, efficiently bind mucin and human epithelial cells in vitro and produce molecules with antimicrobial and antibiofilm activities.


Assuntos
Trato Gastrointestinal , Esporos Bacterianos , Animais , Humanos , Esporos Bacterianos/fisiologia , Intestinos , Íleo , Estômago , Bacillus subtilis/fisiologia
6.
Sci Rep ; 12(1): 20248, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424419

RESUMO

The gut microbiota exerts a variety of positive effects on the intestinal homeostasis, including the production of beneficial molecules, control of the epithelial barrier integrity and the regulation of the balance between host's cell death and proliferation. The interactions between commensal bacteria and intestinal cells are still under-investigated and is then of paramount importance to address such interactions at the molecular and cellular levels. We report an in vitro analysis of the effects of molecules secreted by Lactobacillus gasseri SF1183 on HCT116 cells, selected as a model of intestinal epithelial cells. SF1183 is a L. gasseri strain isolated from an ileal biopsy of a human healthy volunteer, able to prevent colitis symptoms in vivo. Expanding previous findings, we show that bioactive molecules secreted by SF1183 reduce the proliferation of HCT116 cells in a reversible manner determining a variation in cell cycle markers (p21WAF, p53, cyclin D1) and resulting in the protection of HCT116 cells from TNF-alfa induced apoptosis, an effect potentially relevant for the protection of the epithelial barrier integrity and reconstitution of tissue homeostasis. Consistently, SF1183 secreted molecules increase the recruitment of occludin, a major component of TJ, at the cell-cell contacts, suggesting a reinforcement of the barrier function.


Assuntos
Lactobacillus gasseri , Humanos , Intestinos , Proliferação de Células , Apoptose , Células Epiteliais/metabolismo
7.
mBio ; 13(6): e0276022, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36354330

RESUMO

Proteins and glycoproteins that form the surface layers of the Bacillus spore assemble into semipermeable arrays that surround and protect the spore cytoplasm. Such layers, acting like molecular sieves, exclude large molecules but allow small nutrients (germinants) to penetrate. We report that CotG, a modular and abundant component of the Bacillus subtilis spore coat, controls spore permeability through its central region, formed by positively charged tandem repeats. These repeats act as spacers between the N and C termini of the protein, which are responsible for the interaction of CotG with at least one other coat protein. The deletion but not the replacement of the central repeats with differently charged repeats affects the spore resistance to lysozyme and the efficiency of germination-probably by reducing the coat permeability to external molecules. The presence of central repeats is a common feature of the CotG-like proteins present in most Bacillus species, and such a wide distribution of this protein family is suggestive of a relevant role for the structure and function of the Bacillus spore. IMPORTANCE Bacterial spores are quiescent cells extremely resistant to a variety of unphysiological conditions, including the presence of lytic enzymes. Such resistance is also due to the limited permeability of the spore surface, which does not allow lytic enzymes to reach the spore interior. This article proposes that the spore permeability in B. subtilis is mediated by CotG, a modular protein formed by a central region of repeats of positively charged amino acid acting as a "spacer" between the N and C termini. These, in turn, interact with other coat proteins, generating a protein layer whose permeability to external molecules is controlled by the distance between the N and C termini of CotG. This working model is most likely expandable to most sporeformers of the Bacillus genus, since they all have CotG-like proteins, not homologous to CotG of B. subtilis but similarly characterized by central repeats.


Assuntos
Bacillus subtilis , Bacillus , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Bacillus/metabolismo , Esporos Bacterianos/metabolismo , Permeabilidade
8.
Sci Rep ; 12(1): 12682, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879521

RESUMO

Animals living on small islands are more drastically exposed to environmental changes, such as food or water starvation, and rapid temperature shifts. Facing such conditions, and probably thank to adaptive plasticity mechanisms, some animals display a Reversed Island Syndrome (RIS), a suite of traits, including skin pigmentation, voracity, sexual dimorphism, showed differently from mainland relatives. Here, we analyse a so far poorly explored aspect of RIS: the effect of this on the microbiota composition of host Italian wall lizard (Podarcis siculus), strongly influenced by the animal's lifestyle, and conditioning the same. We compare mainland and island populations, assessing the difference between their microbial communities and their response under unexpected food, experimentally provided. Our observations showed a significant difference in microbiota communities between island and mainland groups, depended mainly from changes in relative abundance of the shared genera (difference due to decrease/increase). Exposure to experimental diet regimes resulted into significative reshaping of bacterial composition of microbiota and a greater variation in body mass only in the island population. Our results could be an evidence that gut microbial community contributes to adaptive plasticity mechanisms of island lizards under RIS to efficiently respond to unexpected changes.


Assuntos
Microbioma Gastrointestinal , Lagartos , Animais , Bactérias , Lagartos/fisiologia , Fenótipo , Temperatura
9.
BMC Microbiol ; 22(1): 3, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979918

RESUMO

BACKGROUND: Members of the Bacillus genus produce a large variety of antimicrobial peptides including linear or cyclic lipopeptides and thiopeptides, that often have a broad spectrum of action against Gram-positive and Gram-negative bacteria. We have recently reported that SF214, a marine isolated strain of Bacillus pumilus, produces two different antimicrobials specifically active against either Staphylococcus aureus or Listeria monocytogenes. The anti-Staphylococcus molecule has been previously characterized as a pumilacidin, a nonribosomally synthesized lipopetide composed of a mixture of cyclic heptapeptides linked to fatty acids of variable length. RESULTS: Our analysis on the anti-Listeria molecule of B. pumilus SF214 indicated that it is a peptide slightly smaller than 10 kDa, produced during the exponential phase of growth, stable at a wide range of pH conditions and resistant to various chemical treatments. The peptide showed a lytic activity against growing but not resting cells of Listeria monocytogenes and appeared extremely specific being inactive also against L. innocua, a close relative of L. monocytogenes. CONCLUSIONS: These findings indicate that the B. pumilus peptide is unusual with respect to other antimicrobials both for its time of synthesis and secretion and for its strict specificity against L. monocytogenes. Such specificity, together with its stability, propose this new antimicrobial as a tool for potential biotechnological applications in the fight against the dangerous food-borne pathogen L. monocytogenes.


Assuntos
Antibacterianos/farmacocinética , Peptídeos Antimicrobianos/farmacologia , Bacillus pumilus/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/metabolismo , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/metabolismo , Bacillus pumilus/genética , Bacillus pumilus/crescimento & desenvolvimento , Bacteriólise/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Genoma Bacteriano/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Listeria monocytogenes/crescimento & desenvolvimento , Peso Molecular , Estabilidade Proteica , Especificidade da Espécie
10.
Microb Cell Fact ; 19(1): 185, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004043

RESUMO

BACKGROUND: Bacterial spores displaying heterologous antigens or enzymes have long been proposed as mucosal vaccines, functionalized probiotics or biocatalysts. Two main strategies have been developed to display heterologous molecules on the surface of Bacillus subtilis spores: (i) a recombinant approach, based on the construction of a gene fusion between a gene coding for a coat protein (carrier) and DNA coding for the protein to be displayed, and (ii) a non-recombinant approach, based on the spontaneous and stable adsorption of heterologous molecules on the spore surface. Both systems have advantages and drawbacks and the selection of one or the other depends on the protein to be displayed and on the final use of the activated spore. It has been recently shown that B. subtilis builds structurally and functionally different spores when grown at different temperatures; based on this finding B. subtilis spores prepared at 25, 37 or 42 °C were compared for their efficiency in displaying various model proteins by either the recombinant or the non-recombinant approach. RESULTS: Immune- and fluorescence-based assays were used to analyze the display of several model proteins on spores prepared at 25, 37 or 42 °C. Recombinant spores displayed different amounts of the same fusion protein in response to the temperature of spore production. In spores simultaneously displaying two fusion proteins, each of them was differentially displayed at the various temperatures. The display by the non-recombinant approach was only modestly affected by the temperature of spore production, with spores prepared at 37 or 42 °C slightly more efficient than 25 °C spores in adsorbing at least some of the model proteins tested. CONCLUSION: Our results indicate that the temperature of spore production allows control of the display of heterologous proteins on spores and, therefore, that the spore-display strategy can be optimized for the specific final use of the activated spores by selecting the display approach, the carrier protein and the temperature of spore production.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Temperatura , Toxina Tetânica/metabolismo , Adsorção , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Fragmentos de Peptídeos/genética , Proteínas Recombinantes de Fusão/genética , Toxina Tetânica/genética
11.
Int J Mol Sci ; 21(18)2020 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-32933117

RESUMO

Clostridioides difficile is a Gram-positive, spore-forming bacterium that causes a severe intestinal infection. Spores of this pathogen enter in the human body through the oral route, interact with intestinal epithelial cells and persist in the gut. Once germinated, the vegetative cells colonize the intestine and produce toxins that enhance an immune response that perpetuate the disease. Therefore, spores are major players of the infection and ideal targets for new therapies. In this context, spore surface proteins of C. difficile, are potential antigens for the development of vaccines targeting C. difficile spores. Here, we report that the C-terminal domain of the spore surface protein BclA3, BclA3CTD, was identified as an antigenic epitope, over-produced in Escherichia coli and tested as an immunogen in mice. To increase antigen stability and efficiency, BclA3CTD was also exposed on the surface of B. subtilis spores, a mucosal vaccine delivery system. In the experimental conditions used in this study, free BclA3CTD induced antibody production in mice and attenuated some C. difficile infection symptoms after a challenge with the pathogen, while the spore-displayed antigen resulted less effective. Although dose regimen and immunization routes need to be optimized, our results suggest BclA3CTD as a potentially effective antigen to develop a new vaccination strategy targeting C. difficile spores.


Assuntos
Proteínas de Bactérias/imunologia , Clostridioides difficile/imunologia , Enterocolite Pseudomembranosa/imunologia , Imunoglobulina G/imunologia , Mucosa Nasal/imunologia , Esporos Bacterianos/imunologia , Animais , Antígenos/imunologia , Bacillus subtilis/imunologia , Enterocolite Pseudomembranosa/microbiologia , Epitopos/imunologia , Feminino , Imunização/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucosa Nasal/microbiologia , Vacinação/métodos
12.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32074955

RESUMO

Clostridioides difficile, formerly known as Clostridium difficile, is a spore-forming bacterium considered as the most common cause of nosocomial infections in developed countries. The spore of C. difficile is involved in the transmission of the pathogen and in its first interaction with the host; therefore, a therapeutic approach able to control C. difficile spores would improve the clearance of the infection. The C-terminal (CTD) end of BclA2, a spore surface protein of C. difficile responsible of the interaction with the host intestinal cells, was selected as a putative mucosal antigen. The BclA2 fragment, BclA2CTD, was purified and used to nasally immunize mice both as a free protein and after adsorption to the spore of Bacillus subtilis, a well-established mucosal delivery vehicle. While the adsorption to spores increased the in vitro stability of BclA2CTD, in vivo both free and spore-adsorbed BclA2CTD were able to induce a similar, specific humoral immune response in a murine model. Although in the experimental conditions utilized the immune response was not protective, the induction of specific IgG indicates that free or spore-bound BclA2CTD could act as a putative mucosal antigen targeting C. difficile spores.


Assuntos
Proteínas de Bactérias/imunologia , Clostridioides difficile/metabolismo , Imunidade Humoral , Administração Intranasal , Adsorção , Animais , Bacillus subtilis/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células CACO-2 , Clostridioides difficile/patogenicidade , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Domínios Proteicos/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Esporos Bacterianos/química , Esporos Bacterianos/fisiologia
13.
Microb Cell Fact ; 19(1): 42, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075660

RESUMO

BACKGROUND: Spore-forming bacteria of the Bacillus genus are widely used probiotics known to exert their beneficial effects also through the stimulation of the host immune response. The oral delivery of B. toyonensis spores has been shown to improve the immune response to a parenterally administered viral antigen in mice, suggesting that probiotics may increase the efficiency of systemic vaccines. We used the C fragment of the tetanus toxin (TTFC) as a model antigen to evaluate whether a treatment with B. toyonensis spores affected the immune response to a mucosal antigen. RESULTS: Purified TTFC was given to mice by the nasal route either as a free protein or adsorbed to B. subtilis spores, a mucosal vaccine delivery system proved effective with several antigens, including TTFC. Spore adsorption was extremely efficient and TTFC was shown to be exposed on the spore surface. Spore-adsorbed TTFC was more efficient than the free antigen in inducing an immune response and the probiotic treatment improved the response, increasing the production of TTFC-specific secretory immunoglobin A (sIgA) and causing a faster production of serum IgG. The analysis of the induced cytokines indicated that also the cellular immune response was increased by the probiotic treatment. A 16S RNA-based analysis of the gut microbial composition did not show dramatic differences due to the probiotic treatment. However, the abundance of members of the Ruminiclostridium 6 genus was found to correlate with the increased immune response of animals immunized with the spore-adsorbed antigen and treated with the probiotic. CONCLUSION: Our results indicate that B. toyonensis spores significantly contribute to the humoral and cellular responses elicited by a mucosal immunization with spore-adsorbed TTFC, pointing to the probiotic treatment as an alternative to the use of adjuvants for mucosal vaccinations.


Assuntos
Bacillus/imunologia , Imunidade nas Mucosas , Probióticos/uso terapêutico , Esporos Bacterianos/imunologia , Toxina Tetânica/administração & dosagem , Administração Intranasal , Animais , Bacillus subtilis/imunologia , Imunização , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Sci Rep ; 9(1): 12082, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427655

RESUMO

Endogenous reactive oxygen species (ROS) are by-products of the aerobic metabolism of cells and have an important signalling role as secondary messengers in various physiological processes, including cell growth and development. However, the excessive production of ROS, as well as the exposure to exogenous ROS, can cause protein oxidation, lipid peroxidation and DNA damages leading to cell injuries. ROS accumulation has been associated to the development of health disorders such as neurodegenerative and cardiovascular diseases, inflammatory bowel disease and cancer. We report that spores of strain SF185, a human isolate of Bacillus megaterium, have antioxidant activity on Caco-2 cells exposed to hydrogen peroxide and on a murine model of dextran sodium sulfate-induced oxidative stress. In both model systems spores exert a protective state due to their scavenging action: on cells, spores reduce the amount of intracellular ROS, while in vivo the pre-treatment with spores protects mice from the chemically-induced damages. Overall, our results suggest that treatment with SF185 spores prevents or reduces the damages caused by oxidative stress. The human origin of SF185, its strong antioxidant activity, and its protective effects led to propose the spore of this strain as a new probiotic for gut health.


Assuntos
Bacillus megaterium/metabolismo , Dano ao DNA/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Esporos Bacterianos/química , Animais , Bacillus megaterium/efeitos dos fármacos , Células CACO-2 , Sulfato de Dextrana/farmacologia , Humanos , Peróxido de Hidrogênio/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/metabolismo
15.
Mar Drugs ; 16(6)2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29882934

RESUMO

Producing antimicrobials is a common adaptive behavior shared by many microorganisms, including marine bacteria. We report that SF214, a marine-isolated strain of Bacillus pumilus, produces at least two different molecules with antibacterial activity: a molecule smaller than 3 kDa active against Staphylococcus aureus and a molecule larger than 10 kDa active against Listeria monocytogenes. We focused our attention on the anti-Staphylococcus molecule and found that it was active at a wide range of pH conditions and that its secretion was dependent on the growth phase, medium, and temperature. A mass spectrometry analysis of the size-fractionated supernatant of SF214 identified the small anti-Staphylococcus molecule as a pumilacidin, a nonribosomally synthesized biosurfactant composed of a mixture of cyclic heptapeptides linked to fatty acids of variable length. The analysis of the SF214 genome revealed the presence of a gene cluster similar to the srfA-sfp locus encoding the multimodular, nonribosomal peptide synthases found in other surfactant-producing bacilli. However, the srfA-sfp cluster of SF214 differed from that present in other surfactant-producing strains of B. pumilus by the presence of an insertion element previously found only in strains of B. safensis.


Assuntos
Antibacterianos/farmacologia , Bacillus pumilus/fisiologia , Lipopeptídeos/farmacologia , Peptídeos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Lipopeptídeos/biossíntese , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/metabolismo , Listeria monocytogenes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/isolamento & purificação , Peptídeos/metabolismo , Tensoativos/isolamento & purificação , Tensoativos/metabolismo , Tensoativos/farmacologia
16.
Front Microbiol ; 7: 1752, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27867376

RESUMO

Bacterial spores spontaneously interact and tightly bind heterologous proteins. A variety of antigens and enzymes have been efficiently displayed on spores of Bacillus subtilis, the model system for spore formers. Adsorption on B. subtilis spores has then been proposed as a non-recombinant approach for the development of mucosal vaccine/drug delivery vehicles, biocatalysts, bioremediation, and diagnostic tools. We used spores of B. megaterium QM B1551 to evaluate their efficiency as an adsorption platform. Spores of B. megaterium are significantly larger than those of B. subtilis and of other Bacillus species and are surrounded by the exosporium, an outermost surface layer present only in some Bacillus species and lacking in B. subtilis. Strain QM B1551 of B. megaterium and a derivative strain totally lacking the exosporium were used to localize the adsorbed monomeric Red Fluorescent Protein (mRFP) of the coral Discosoma sp., used as a model heterologous protein. Our results indicate that spores of B. megaterium adsorb mRFP more efficiently than B. subtilis spores, that the exosporium is essential for mRFP adsorption, and that most of the adsorbed mRFP molecules are not exposed on the spore surface but rather localized in the space between the outer coat and the exosporium.

17.
J Bacteriol ; 198(10): 1513-20, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26953338

RESUMO

UNLABELLED: CotG is an abundant protein initially identified as an outer component of the Bacillus subtilis spore coat. It has an unusual structure characterized by several repeats of positively charged amino acids that are probably the outcome of multiple rounds of gene elongation events in an ancestral minigene. CotG is not highly conserved, and its orthologues are present in only two Bacillus and two Geobacillus species. In B. subtilis, CotG is the target of extensive phosphorylation by a still unidentified enzyme and has a role in the assembly of some outer coat proteins. We report now that most spore-forming bacilli contain a protein not homologous to CotG of B. subtilis but sharing a central "modular" region defined by a pronounced positive charge and randomly coiled tandem repeats. Conservation of the structural features in most spore-forming bacilli suggests a relevant role for the CotG-like protein family in the structure and function of the bacterial endospore. To expand our knowledge on the role of CotG, we dissected the B. subtilis protein by constructing deletion mutants that express specific regions of the protein and observed that they have different roles in the assembly of other coat proteins and in spore germination. IMPORTANCE: CotG of B. subtilis is not highly conserved in the Bacillus genus; however, a CotG-like protein with a modular structure and chemical features similar to those of CotG is common in spore-forming bacilli, at least when CotH is also present. The conservation of CotG-like features when CotH is present suggests that the two proteins act together and may have a relevant role in the structure and function of the bacterial endospore. Dissection of the modular composition of CotG of B. subtilis by constructing mutants that express only some of the modules has allowed a first characterization of CotG modules and will be the basis for a more detailed functional analysis.


Assuntos
Bacillus/metabolismo , Proteínas de Bactérias/química , Bacillus/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Biologia Computacional/métodos , Evolução Molecular , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
18.
PLoS One ; 10(10): e0141040, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26484546

RESUMO

In Bacillus subtilis the protective layers that surround the mature spore are formed by over seventy different proteins. Some of those proteins have a regulatory role on the assembly of other coat proteins and are referred to as morphogenetic factors. CotE is a major morphogenetic factor, known to form a ring around the forming spore and organize the deposition of the outer surface layers. CotH is a CotE-dependent protein known to control the assembly of at least nine other coat proteins. We report that CotH also controls the assembly of CotE and that this mutual dependency is due to a direct interaction between the two proteins. The C-terminal end of CotE is essential for this direct interaction and CotH cannot bind to mutant CotE deleted of six or nine C-terminal amino acids. However, addition of a negatively charged amino acid to those deleted versions of CotE rescues the interaction.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Esporos Bacterianos/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas , Esporos Bacterianos/genética
19.
PLoS One ; 9(8): e104900, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115591

RESUMO

Spore formers are bacteria able to survive harsh environmental conditions by differentiating a specialized, highly resistant spore. In Bacillus subtilis, the model system for spore formers, the recently discovered crust and the proteinaceous coat are the external layers that surround the spore and contribute to its survival. The coat is formed by about seventy different proteins assembled and organized into three layers by the action of a subset of regulatory proteins, referred to as morphogenetic factors. CotH is a morphogenetic factor needed for the development of spores able to germinate efficiently and involved in the assembly of nine outer coat proteins, including CotG. Here we report that CotG has negative effects on spore germination and on the assembly of at least three outer coat proteins. Such negative action is exerted only in mutants lacking CotH, thus suggesting an antagonistic effect of the two proteins, with CotH counteracting the negative role of CotG.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Sequência de Aminoácidos , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Genes Bacterianos , Dados de Sequência Molecular , Muramidase/farmacologia , Mutação , Multimerização Proteica/genética , Multimerização Proteica/fisiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA