Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 313(1): H200-H206, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28411232

RESUMO

Experimental studies have suggested that Wingless-related integration site 5A (WNT5A) is a proinflammatory secreted protein that is associated with metabolic dysfunction in obesity. Impaired angiogenesis in fat depots has been implicated in the development of adipose tissue capillary rarefaction, hypoxia, inflammation, and metabolic dysfunction. We have recently demonstrated that impaired adipose tissue angiogenesis is associated with overexpression of antiangiogenic factor VEGF-A165b in human fat and the systemic circulation. In the present study, we postulated that upregulation of WNT5A is associated with angiogenic dysfunction and examined its role in regulating VEGF-A165b expression in human obesity. We biopsied subcutaneous and visceral adipose tissue from 38 obese individuals (body mass index: 44 ± 7 kg/m2, age: 37 ± 11 yr) during planned bariatric surgery and characterized depot-specific protein expression of VEGF-A165b and WNT5A using Western blot analysis. In both subcutaneous and visceral fat, VEGF-A165b expression correlated strongly with WNT5A protein (r = 0.9, P < 0.001). In subcutaneous adipose tissue where angiogenic capacity is greater than in the visceral depot, exogenous human recombinant WNT5A increased VEGF-A165b expression in both whole adipose tissue and isolated vascular endothelial cell fractions (P < 0.01 and P < 0.05, respectively). This was associated with markedly blunted angiogenic capillary sprout formation in human fat pad explants. Moreover, recombinant WNT5A increased secretion of soluble fms-like tyrosine kinase-1, a negative regulator of angiogenesis, in the sprout media (P < 0.01). Both VEGF-A165b-neutralizing antibody and secreted frizzled-related protein 5, which acts as a decoy receptor for WNT5A, significantly improved capillary sprout formation and reduced soluble fms-like tyrosine kinase-1 production (P < 0.05). We demonstrated a significant regulatory nexus between WNT5A and antiangiogenic VEGF-A165b in the adipose tissue of obese subjects that was linked to angiogenic dysfunction. Elevated WNT5A expression in obesity may function as a negative regulator of angiogenesis.NEW & NOTEWORTHY Wingless-related integration site 5a (WNT5A) negatively regulates adipose tissue angiogenesis via VEGF-A165b in human obesity.


Assuntos
Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/fisiopatologia , Inibidores da Angiogênese/metabolismo , Neovascularização Patológica/fisiopatologia , Obesidade/fisiopatologia , Proteína Wnt-5a/metabolismo , Adulto , Feminino , Humanos , Masculino , Transcriptoma , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Vasc Med ; 21(6): 489-496, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27688298

RESUMO

Obesity is associated with the development of vascular insulin resistance; however, pathophysiological mechanisms are poorly understood. We sought to investigate the role of WNT5A-JNK in the regulation of insulin-mediated vasodilator responses in human adipose tissue arterioles prone to endothelial dysfunction. In 43 severely obese (BMI 44±11 kg/m2) and five metabolically normal non-obese (BMI 26±2 kg/m2) subjects, we isolated arterioles from subcutaneous and visceral fat during planned surgeries. Using videomicroscopy, we examined insulin-mediated, endothelium-dependent vasodilator responses and characterized adipose tissue gene and protein expression using real-time polymerase chain reaction and Western blot analyses. Immunofluorescence was used to quantify endothelial nitric oxide synthase (eNOS) phosphorylation. Insulin-mediated vasodilation was markedly impaired in visceral compared to subcutaneous vessels from obese subjects (p<0.001), but preserved in non-obese individuals. Visceral adiposity was associated with increased JNK activation and elevated expression of WNT5A and its non-canonical receptors, which correlated negatively with insulin signaling. Pharmacological JNK antagonism with SP600125 markedly improved insulin-mediated vasodilation by sixfold (p<0.001), while endothelial cells exposed to recombinant WNT5A developed insulin resistance and impaired eNOS phosphorylation (p<0.05). We observed profound vascular insulin resistance in the visceral adipose tissue arterioles of obese subjects that was associated with up-regulated WNT5A-JNK signaling and impaired endothelial eNOS activation. Pharmacological JNK antagonism markedly improved vascular endothelial function, and may represent a potential therapeutic target in obesity-related vascular disease.


Assuntos
Adiposidade , Arteríolas/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Resistência à Insulina , Insulina/farmacologia , Gordura Intra-Abdominal/irrigação sanguínea , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Obesidade/enzimologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt-5a/metabolismo , Adolescente , Adulto , Arteríolas/enzimologia , Arteríolas/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Técnicas In Vitro , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/fisiopatologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA