Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 174: 108413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608323

RESUMO

BACKGROUND AND OBJECTIVES: Lifestyle-related diseases (LSDs) impose a substantial economic burden on patients and health care services. LSDs are chronic in nature and can directly affect the heart and lungs. Therapeutic interventions only based on symptoms can be crucial for prompt treatment initiation in LSDs, as symptoms are the first information available to clinicians. So, this work aims to apply unsupervised machine learning (ML) techniques for developing models to predict drugs from symptoms for LSDs, with a specific focus on pulmonary and heart diseases. METHODS: The drug-disease and disease-symptom associations of 143 LSDs, 1271 drugs, and 305 symptoms were used to compute direct associations between drugs and symptoms. ML models with four different algorithms - K-Means, Bisecting K-Means, Mean Shift, and Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) - were developed to cluster the drugs using symptoms as features. The optimal model was saved in a server for the development of a web application. A web application was developed to perform the prediction based on the optimal model. RESULTS: The Bisecting K-means model showed the best performance with a silhouette coefficient of 0.647 and generated 138 drug clusters. The drugs within the optimal clusters showed good similarity based on i) gene ontology annotations of the gene targets, ii) chemical ontology annotations, and iii) maximum common substructure of the drugs. In the web application, the model also provides a confidence score for each predicted drug while predicting from a new set of input symptoms. CONCLUSION: In summary, direct associations between drugs and symptoms were computed, and those were used to develop a symptom-based drug prediction tool for LSDs with unsupervised ML models. The ML-based prediction can provide a second opinion to clinicians to aid their decision-making for early treatment of LSD patients. The web application (URL - http://bicresources.jcbose.ac.in/ssaha4/sdldpred) can provide a simple interface for all end-users to perform the ML-based prediction.


Assuntos
Aprendizado de Máquina não Supervisionado , Humanos , Doença Crônica , Estilo de Vida , Algoritmos
2.
Proteins ; 92(1): 60-75, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37638618

RESUMO

Proteins are played key roles in different functionalities in our daily life. All functional roles of a protein are a bit enhanced in interaction compared to individuals. Identification of essential proteins of an organism is a time consume and costly task during observation in the wet lab. The results of observation in wet lab always ensure high reliability and accuracy in the biological ground. Essential protein prediction using computational approaches is an alternative choice in research. It proves its significance rapidly in day-to-day life as well as reduces the experimental cost of wet lab effectively. Existing computational methods were implemented using Protein interaction networks (PPIN), Sequence, Gene Expression Dataset (GED), Gene Ontology (GO), Orthologous groups, and Subcellular localized datasets. Machine learning has diverse categories of features that enable to model and predict essential macromolecules of understudied organisms. A novel methodology MEM-FET (membership feature) is predicted based on features, that is, edge clustering coefficient, Average clustering coefficient, subcellular localization, and Gene Ontology within a compartment of common neighbors. The accuracy (ACC) values of the predicted true positive (TP) essential proteins are 0.79, 0.74, 0.78, and 0.71 for YHQ, YMIPS, YDIP, and YMBD datasets. An enriched set of essential proteins are also predicted using the MEM-FET algorithm. Ensemble ML also validated the proposed model with an accuracy of 60%. It has been predicted that MEM-FET algorithms outperform other existing algorithms with an ACC value of 80% for the yeast dataset.


Assuntos
Biologia Computacional , Proteínas , Humanos , Reprodutibilidade dos Testes , Biologia Computacional/métodos , Proteínas/genética , Proteínas/metabolismo , Algoritmos , Aprendizado de Máquina , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
3.
Comput Methods Programs Biomed ; 228: 107247, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36427433

RESUMO

BACKGROUND AND OBJECTIVE: Proteins are indispensable for the flow of the life of living organisms. Protein pairs in interaction exhibit more functional activities than individuals. These activities have been considered an essential measure in predicting their essentiality. Neighborhood approaches have been used frequently in the prediction of essentiality scores. All paired neighbors of the essential proteins are nominated for the suitable candidate seeds for prediction. Still now Jaccard's coefficient is limited to predicting functions, homologous groups, sequence analysis, etc. It really motivate us to predict essential proteins efficiently using different computational approaches. METHODS: In our work, we proposed modified Jaccard's coefficient to predict essential proteins. We have proposed a novel methodology for predicting essential proteins using MAX-MIN strategies and modified Jaccard's coefficient approach. RESULTS: The performance of our proposed methodology has been analyzed for Saccharomyces cerevisiae datasets with an accuracy of more than 80%. It has been observed that the proposed algorithm is outperforms with an accuracy of 0.78, 0.74, 0.79, and 0.862 for YDIP, YMIPS, YHQ, and YMBD datasets respectivly. CONCLUSIONS: There are several computational approaches in the existing state-of-art model of essential protein prediction. It has been noted that our predicted methodology outperforms other existing models viz. different centralities, local interaction density combined with protein complexes, modified monkey algorithm and ortho_sim_loc methods.


Assuntos
Algoritmos , Proteínas
4.
Biomed Signal Process Control ; 77: 103745, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35582239

RESUMO

Background and objectives: The computed tomography (CT) scan facilities are crucial for diagnosis of pulmonary diseases and are overburdened during the current pandemic of novel coronavirus disease 2019 (COVID-19). LHSPred (Lung Health Severity Prediction) is a web based tool that enables users to determine a score that evaluates CT scans, without radiologist intervention, and predict risk of pneumonia with features of blood examination and age of patient. It can help in early assessment of lung health severity of patients without CT-scan results and also enable monitoring of post-COVID lung health for recovered patients. Methods: This tool uses Support Vector Regression (SVR) and Multi-Layer Perceptron Regression (MLPR), trained on COVID-19 patient data reported in the literature. It allows to compute a score (CT severity score) that evaluates the involvement of lesions in lung lobes and to predict risk of pneumonia. A web application was implemented that uses the trained regression models. Results: The application has proven to be effective and user friendly in a clinical setting for pulmonary disease treatment. The SVR model achieved Pearson correlation coefficient (PCC) of 0.77 and mean absolute error (MAE) of 2.239 while determining the computed tomography (CT) severity score. The MLPR model achieved PCC of 0.77 and MAE of 2.309. Thus, it can be applied as a useful tool in predicting pneumonia in the post COVID-19 era. Conclusion: LHSPred can be used as a decision support system by the clinicians and as a tool for self-assessment by the patients with only six blood test input features.

5.
Comput Biol Chem ; 92: 107503, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33962168

RESUMO

Proteins are the essential macro-molecules of living organism. But all proteins cannot be considered as essential in different relevant studies. Essentiality of a protein is thus computed by computation methods rather than biological experiments which in turn save both time and effort. Different computational approaches are already predicted to select essential proteins successfully with different biological significances by researchers. Most of the experimental approaches return higher false negative outcomes with respect to others. In order to retain the prediction accuracy level, a novel methodology "Ortho_Sim_Loc"has been proposed which is a combined approach of Orthology, Similarity (using clustering and priority based GO-Annotation) and Subcellular localization. Ortho_Sim_Loc can predict enriched functional set essential proteins. The predicted results are validated with other existing methods like different centrality measures, LIDC. The validation results exhibits better performance of Ortho_Sim_Loc in compare to other existing computational approaches.


Assuntos
Algoritmos , Biologia Computacional , Proteínas/análise , Bases de Dados de Proteínas , Proteínas/metabolismo , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA